Volume 34 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Zhendong Li. Structured Eigenvalue Problems in Electronic Structure Methods from a Unified Perspective†[J]. Chinese Journal of Chemical Physics , 2021, 34(5): 525-531. doi: 10.1063/1674-0068/cjcp2107119
Citation: Zhendong Li. Structured Eigenvalue Problems in Electronic Structure Methods from a Unified Perspective[J]. Chinese Journal of Chemical Physics , 2021, 34(5): 525-531. doi: 10.1063/1674-0068/cjcp2107119

Structured Eigenvalue Problems in Electronic Structure Methods from a Unified Perspective

doi: 10.1063/1674-0068/cjcp2107119
More Information
  • Corresponding author: Zhendong Li, E-mail: zhendongli@bnu.edu.cn
  • Received Date: 2021-07-13
  • Accepted Date: 2021-08-14
  • Publish Date: 2021-10-27
  • In (relativistic) electronic structure methods, the quaternion matrix eigenvalue problem and the linear response (Bethe-Salpeter) eigenvalue problem for excitation energies are two frequently encountered structured eigenvalue problems. While the former problem was thoroughly studied, the later problem in its most general form, namely, the complex case without assuming the positive definiteness of the electronic Hessian, was not fully understood. In view of their very similar mathematical structures, we examined these two problems from a unified point of view. We showed that the identification of Lie group structures for their eigenvectors provides a framework to design diagonalization algorithms as well as numerical optimizations techniques on the corresponding manifolds. By using the same reduction algorithm for the quaternion matrix eigenvalue problem, we provided a necessary and sufficient condition to characterize the different scenarios, where the eigenvalues of the original linear response eigenvalue problem are real, purely imaginary, or complex. The result can be viewed as a natural generalization of the well-known condition for the real matrix case.

     

  • Part of special topic of "the Young Scientist Forum on Chemical Physics: Theoretical and Computational Chemistry Workshop 2020".
  • loading
  • [1]
    K. G. Dyall and K. Fægri Jr., Introduction to Relativistic Quantum Chemistry, Oxford University Press (2007).
    [2]
    D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968). doi: 10.1103/RevModPhys.40.153
    [3]
    N. Rösch, Chem. Phys. 80, 1 (1983). doi: 10.1016/0301-0104(83)85163-5
    [4]
    A. Bunse-Gerstner, R. Byers, and V. Mehrmann, Numerische Mathematik 55, 83 (1989). doi: 10.1007/BF01395873
    [5]
    T. Saue and H. A. Jensen, J. Chem. Phys. 111, 6211 (1999). doi: 10.1063/1.479958
    [6]
    J. J. Dongarra, J. R. Gabriel, D. D. Koelling, and J. H. Wilkinson, Linear Algebra Appl. 60, 27 (1984). doi: 10.1016/0024-3795(84)90068-5
    [7]
    T. Shiozaki, Mol. Phys. 115, 5 (2017). doi: 10.1080/00268976.2016.1158423
    [8]
    J. Olsen and P. Jørgensen, J. Chem. Phys. 82, 3235 (1985). doi: 10.1063/1.448223
    [9]
    J. Olsen, H. J. A. Jensen, and P. Jørgensen, J. Comput. Phys. 74, 265 (1988). doi: 10.1016/0021-9991(88)90081-2
    [10]
    K. Sasagane, F. Aiga, and R. Itoh, J. Chem. Phys. 99, 3738 (1993). doi: 10.1063/1.466123
    [11]
    O. Christiansen, P. Jørgensen, and C. Hättig, Int. J. Quantum Chem. 68, 1 (1998). doi: 10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z
    [12]
    M. E. Casida, Recent Advances in Density Functional Methods, D. P. Chang Ed., Singapore: World Scientific, 155 (1995).
    [13]
    J. Gao, W. J. Liu, B. Song, and C. B. Liu, J. Chem. Phys. 121, 6658 (2004). doi: 10.1063/1.1788655
    [14]
    R. Bast, H. J. A. Jensen, and T. Saue, Int. J. Quantum Chem. 109, 2091 (2009). doi: 10.1002/qua.22065
    [15]
    F. Egidi, J. J. Goings, M. J. Frisch, and X. S. Li, J. Chem. Theory Comput. 12, 3711 (2016). doi: 10.1021/acs.jctc.6b00474
    [16]
    W. J. Liu and Y. L. Xiao, Chem. Soc. Rev. 47, 4481 (2018). doi: 10.1039/C8CS00175H
    [17]
    S. Komorovsky, P. J. Cherry, and M. Repisky, J. Chem. Phys. 151, 184111 (2019). doi: 10.1063/1.5121713
    [18]
    E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951). doi: 10.1103/PhysRev.84.1232
    [19]
    R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 109, 8218 (1998). doi: 10.1063/1.477483
    [20]
    M. Y. Shao and C. Yang, International Workshop on Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing, Springer, 91-105 (2015).
    [21]
    M. Y. Shao, H. Felipe, C. Yang, J. Deslippe, and S. G. Louie, Linear Algebra Appl. 488, 148 (2016). doi: 10.1016/j.laa.2015.09.036
    [22]
    P. Benner, H. Faßbender, and C. Yang, Linear Algebra Appl. 544, 407 (2018). doi: 10.1016/j.laa.2018.01.014
    [23]
    M. Seth and T. Ziegler, J. Chem. Phys. 123, 144105 (2005). doi: 10.1063/1.2047553
    [24]
    Z. D. Li, W. J. Liu, Y. Zhang, and B. B. Suo, J. Chem. Phys. 134, 134101 (2011). doi: 10.1063/1.3573374
    [25]
    D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems, Berlin: Springer-Verlag, vol. 46 (2005).
    [26]
    N. H. List, S. Coriani, O. Christiansen, and J. Kongsted, J. Chem. Phys. 140, 224103 (2014). doi: 10.1063/1.4881145
    [27]
    G. A. Aucar, H. A. Jensen, and J. Oddershede, Chem. Phys. Lett. 232, 47 (1995). doi: 10.1016/0009-2614(94)01332-P
    [28]
    T. Fleig, C. M. Marian, and J. Olsen, Theor. Chem. Acc. 97, 125 (1997). doi: 10.1007/s002140050245
    [29]
    P. A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press (2009).
    [30]
    C. Paige and C. Van Loan, Linear Algebra Appl. 41, 11 (1981). doi: 10.1016/0024-3795(81)90086-0
    [31]
    C. Van Loan, Linear Algebra Appl. 61, 233 (1984). doi: 10.1016/0024-3795(84)90034-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (197) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return