Hui-xiao Duan, Shi-yan Sun, Xiao-ying Fang, Rui-fang Zhang, Xiang-fu Jia. Theoretical Analysis on Fully Differential Cross-Sections for C6+ Single Ionization of Helium[J]. Chinese Journal of Chemical Physics , 2014, 27(3): 279-284. doi: 10.1063/1674-0068/27/03/279-284
Citation: Hui-xiao Duan, Shi-yan Sun, Xiao-ying Fang, Rui-fang Zhang, Xiang-fu Jia. Theoretical Analysis on Fully Differential Cross-Sections for C6+ Single Ionization of Helium[J]. Chinese Journal of Chemical Physics , 2014, 27(3): 279-284. doi: 10.1063/1674-0068/27/03/279-284

Theoretical Analysis on Fully Differential Cross-Sections for C6+ Single Ionization of Helium

doi: 10.1063/1674-0068/27/03/279-284
Funds:  This work was supported by the National Natural Science Foundation of China (No.11274215), the Nat-ural Science Foundation of Shanxi Province, China (No.20051008 and No.2010011009), and the Technology Project of Shanxi Provincial Education Department, China (No.20111011).
  • Received Date: 2013-11-27
  • The four-body model has been used to calculate the fully differential cross-sections (FDCS) for the single ionization of helium by 100 MeV/amu C6+ impact in geometries. By compar-ing with experimental data and other theories, we find the results of four-body model are in very good agreement in the scattering plane, but poor agreement out of the scattering plane. Accordingly, the contributions of different scattering amplitudes to FDCS are analyzed. It is found that the cross sections due to the interference of the scattering amplitudes between projectile-target nucleus interaction and projectile-ejected electron interaction almost tend to experimental results around the recoil region in geometries. In particular in the perpen-dicular plane, the cross section originating from interference of the scattering amplitudes between projectile-target nucleus and projectile-ejected electron interactions yields an ex-perimental double-peak structure in the angular distribution. However, this feature could not be presented by the interference of the three amplitudes. Thus, the failure of the four-body model predicting the feature in this geometry may be attributed to an inappropriate weighting of the three amplitudes.
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1506) PDF downloads(1325) Cited by()

Proportional views
Related

Theoretical Analysis on Fully Differential Cross-Sections for C6+ Single Ionization of Helium

doi: 10.1063/1674-0068/27/03/279-284
Funds:  This work was supported by the National Natural Science Foundation of China (No.11274215), the Nat-ural Science Foundation of Shanxi Province, China (No.20051008 and No.2010011009), and the Technology Project of Shanxi Provincial Education Department, China (No.20111011).

Abstract: The four-body model has been used to calculate the fully differential cross-sections (FDCS) for the single ionization of helium by 100 MeV/amu C6+ impact in geometries. By compar-ing with experimental data and other theories, we find the results of four-body model are in very good agreement in the scattering plane, but poor agreement out of the scattering plane. Accordingly, the contributions of different scattering amplitudes to FDCS are analyzed. It is found that the cross sections due to the interference of the scattering amplitudes between projectile-target nucleus interaction and projectile-ejected electron interaction almost tend to experimental results around the recoil region in geometries. In particular in the perpen-dicular plane, the cross section originating from interference of the scattering amplitudes between projectile-target nucleus and projectile-ejected electron interactions yields an ex-perimental double-peak structure in the angular distribution. However, this feature could not be presented by the interference of the three amplitudes. Thus, the failure of the four-body model predicting the feature in this geometry may be attributed to an inappropriate weighting of the three amplitudes.

Hui-xiao Duan, Shi-yan Sun, Xiao-ying Fang, Rui-fang Zhang, Xiang-fu Jia. Theoretical Analysis on Fully Differential Cross-Sections for C6+ Single Ionization of Helium[J]. Chinese Journal of Chemical Physics , 2014, 27(3): 279-284. doi: 10.1063/1674-0068/27/03/279-284
Citation: Hui-xiao Duan, Shi-yan Sun, Xiao-ying Fang, Rui-fang Zhang, Xiang-fu Jia. Theoretical Analysis on Fully Differential Cross-Sections for C6+ Single Ionization of Helium[J]. Chinese Journal of Chemical Physics , 2014, 27(3): 279-284. doi: 10.1063/1674-0068/27/03/279-284

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return