Volume 35 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Juan Li, Qiang Wan, Guizhu Lin, Sen Lin. DFT Study on the Catalytic Role of $\alpha$-MoC(100) in Methanol Steam Reforming[J]. Chinese Journal of Chemical Physics , 2022, 35(4): 639-646. doi: 10.1063/1674-0068/cjcp2204075
Citation: Juan Li, Qiang Wan, Guizhu Lin, Sen Lin. DFT Study on the Catalytic Role of $\alpha$-MoC(100) in Methanol Steam Reforming[J]. Chinese Journal of Chemical Physics , 2022, 35(4): 639-646. doi: 10.1063/1674-0068/cjcp2204075

DFT Study on the Catalytic Role of $\alpha$-MoC(100) in Methanol Steam Reforming

doi: 10.1063/1674-0068/cjcp2204075
More Information
  • Corresponding author: Guizhu Lin, E-mail: linguizhu82@163.com; Sen Lin, E-mail: slin@fzu.edu.cn
  • Received Date: 2022-04-27
  • Accepted Date: 2022-06-02
  • Publish Date: 2022-08-27
  • In this work, we investigated the methanol steam reforming (MSR) reaction (CH$_3$OH+H$_2$O $\rightarrow$CO$_2$+3H$_2$) catalyzed by $\alpha$-MoC by means of density functional theory calculations. The adsorption behavior of the relevant intermediates and the kinetics of the elementary steps in the MSR reaction are systematically investigated. The results show that, on the $\alpha$-MoC(100) surface, the O$-$H bond cleavage of CH$_3$OH leads to CH$_3$O, which subsequently dehydrogenates to CH$_2$O. Then, the formation of CH$_2$OOH between CH$_2$O and OH is favored over the decomposition to CHO and H. The sequential dehydrogenation of CH$_2$OOH results in a high selectivity for CO$_2$. In contrast, the over-strong adsorption of the CH$_2$O intermediate on the $\alpha$-MoC(111) surface leads to its dehydrogenation to CO product. In addition, we found that OH species, which is produced from the facile water activation, help the O$-$H bond breaking of intermediates by lowering the reaction energy barrier. This work not only reveals the catalytic role played by $\alpha$-MoC(100) in the MSR reaction, but also provides theoretical guidance for the design of $\alpha$-MoC-based catalysts.


  • Part of Special Topic "the 1st Young Scientist Symposium on Computational Catalysis".
  • loading
  • [1]
    O. Z. Sharaf and M. F. Orhan, Renew. Sustain. Energy Rev. 32, 810 (2014). doi: 10.1016/j.rser.2014.01.012
    I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, and K. R. Ward, Energy Environ. Sci. 12, 463 (2019). doi: 10.1039/C8EE01157E
    S. H. Osman, S. K. Kamarudin, N. A. Karim, and S. Basri, Int. J. Energy Res. 45, 18318 (2021). doi: 10.1002/er.6969
    J. D. Holladay, Y. Wang, and E. Jones, Chem. Rev. 104, 4767 (2004). doi: 10.1021/cr020721b
    M. Nielsen, E. Alberico, W. Baumann, H. Drexler, H. Junge, S. Gladiali, and M. Beller, Nature 495, 85 (2013). doi: 10.1038/nature11891
    K. M. K. Yu, W. Tong, A. West, K. Cheung, T. Li, G. Smith, Y. Guo, and S. C. E. Tsang, Nat. Commun. 3, 1230 (2012). doi: 10.1038/ncomms2242
    M. Yadav and Q. Xu, Energy Environ. Sci. 5, 9698 (2012). doi: 10.1039/c2ee22937d
    G. A. Olah, Catal. Lett. 93, 1 (2004). doi: 10.1023/B:CATL.0000017043.93210.9c
    S. Sá, H. Silva, L. Brandāo, J. M. Sousa, and A. Mendes, Appl. Catal. 99, 43 (2010). doi: 10.1016/j.apcatb.2010.06.015
    S. Wang, M. Jian, H. Su, and W. Li, Chin. J. Chem. Phys. 31, 284 (2018). doi: 10.1063/1674-0068/31/cjcp1803038
    X. Zhang, J. Liu, B. Zijlstra, I. A. W. Filot, Z. Zhou, S. Sun, and E. J. M. Hensen, Nano Energy 43, 200 (2018). doi: 10.1016/j.nanoen.2017.11.021
    S. Lin, J. Ma, X. Ye, D. Xie, and H. Guo, J. Phys. Chem. C 117, 14667 (2013). doi: 10.1021/jp404509v
    X. Gu, B. Qiao, C. Huang, W. Ding, K. Sun, E. Zhan, T. Zhang, J. Liu, and W. Li, ACS Catal. 4, 3886 (2014). doi: 10.1021/cs500740u
    S. Wang, H. Su, X. Gu, and W. Li, J. Phys. Chem. C 121, 21553 (2017). doi: 10.1021/acs.jpcc.7b07703
    T. B. Rawal, S. R. Acharya, S. Hong, D. Le, Y. Tang, F. F. Tao, and T. S. Rahman, ACS Catal. 8, 5553 (2018). doi: 10.1021/acscatal.7b04504
    F. Cai, Y. Guo, J. J. Ibrahim, J. Zhang, and Y. Sun, Appl. Catal. 299, 120648 (2021). doi: 10.1016/j.apcatb.2021.120648
    X. Lu, Z. Deng, C. Guo, W. Wang, S. Wei, S. Ng, X. Chen, N. Ding, W. Guo, and C. L. Wu, ACS Appl. Mater. Interfaces 8, 12194 (2016). doi: 10.1021/acsami.6b02932
    E. Nowicka, S. M. Althahban, Y. Luo, R. Kriegel, G. Shaw, D. J. Morgan, Q. He, M. Watanabe, M. Armbrüster, C. J. Kiely, and G. J. Hutchings, Catal. Sci. Technol. 8, 5848 (2018). doi: 10.1039/C8CY01100A
    S. Lin, D. Xie, and H. Guo, J. Phys. Chem. C 115, 20583 (2011). doi: 10.1021/jp206511q
    S. Lin, D. Xie, and H. Guo, J. Mol. Catal. A: Chem. 356, 165 (2012). doi: 10.1016/j.molcata.2012.01.011
    G. K. Smith, S. Lin, W. Lai, A. Datye, D. Xie, and H. Guo, Surf. Sci. 605, 750 (2011). doi: 10.1016/j.susc.2011.01.014
    D. Li, F. Xu, X. Tang, S. Dai, T. Pu, X. Liu, P. Tian, F. Xuan, Z. Xu, I. E. Wachs, and M. Zhu, Nat. Catal. 5, 99 (2022). doi: 10.1038/s41929-021-00729-4
    S. Lin, D. Xie, and H. Guo, ACS Catal. 1, 1263 (2011). doi: 10.1021/cs200311t
    R. Thattarathody, M. Artoul, R. M. Digilov, and M. Sheintuch, Ind. Eng. Chem. Res. 57, 3175 (2018). doi: 10.1021/acs.iecr.7b05033
    W. Tong, A. West, K. Cheung, K. Yu, and S. C. E. Tsang, ACS Catal. 3, 1231 (2013). doi: 10.1021/cs400011m
    Y. Wang, H. Zhang, P. An, H. Wu, and J. Jia, J. Phys. Chem. C 125, 20905 (2021). doi: 10.1021/acs.jpcc.1c06375
    S. Lin, R. S. Johnson, G. K. Smith, D. Xie, and H. Guo, Phys. Chem. Chem. Phys. 13, 9622 (2011). doi: 10.1039/c1cp20067d
    S. Wang, X. Gu, H. Su, and W. Li, J. Phys. Chem. C 122, 10811 (2018). doi: 10.1021/acs.jpcc.8b00085
    M. Kurtz, H. Wilmer, T. Genger, O. Hinrichsen, and M. Muhler, Catal. Lett. 86, 77 (2003). doi: 10.1023/A:1022663125977
    S. Qing, X. Hou, L. Li, G. Feng, X. Wang, Z. Gao, and W. Fan, Int. J. Energy Res. 44, 16667 (2019).
    S. Lin, J. Ma, L. Zhou, C. Huang, D. Xie, and H. Guo, J. Phys. Chem. C 117, 451 (2013).
    N. Iwasa, T. Mayanagi, N. Ogawa, K. Sakata, and N. Takezawa, Catal. Lett. 54, 119 (1998). doi: 10.1023/A:1019056728333
    Y. Suwa, S. i. Ito, S. Kameoka, K. Tomishige, and K. Kunimori, Appl. Catal. 267, 9 (2004). doi: 10.1016/j.apcata.2004.02.016
    F. Cai, J. J. Ibrahim, Y. Fu, W. Kong, S. Li, J. Zhang, and Y. Sun, Ind. Eng. Chem. Res. 59, 18756 (2020). doi: 10.1021/acs.iecr.0c03311
    L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y. W. Li, C. Shi, X. Wen, and D. Ma, Nature 544, 80 (2017). doi: 10.1038/nature21672
    L. Lin, Q. Yu, M. Peng, A. Li, S. Yao, S. Tian, X. Liu, A. Li, Z. Jiang, R. Gao, X. Han, Y. Li, X. Wen, W. Zhou, and D. Ma, J. Am. Chem. Soc. 143, 309 (2021). doi: 10.1021/jacs.0c10776
    F. Cai, J. J. Ibrahim, Y. Fu, W. Kong, J. Zhang, and Y. Sun, Appl. Catal. 264, 118500 (2020). doi: 10.1016/j.apcatb.2019.118500
    L. Sun, J. Xu, X. Liu, B. Qiao, L. Li, Y. Ren, Q. Wan, J. Lin, S. Lin, X. Wang, H. Guo, and T. Zhang, ACS Catal. 11, 5942 (2021). doi: 10.1021/acscatal.1c00231
    J. Li, L. Sun, Q. Wan, J. Lin, S. Lin, and X. Wang, J. Phys. Chem. Lett. 12, 11415 (2021). doi: 10.1021/acs.jpclett.1c02762
    D. Kunwar, S. Zhou, A. DeLaRiva, E. J. Peterson, H. Xiong, X. I. Pereira-Hernández, S. C. Purdy, R. ter Veen, H. H. Brongersma, J. T. Miller, H. Hashiguchi, L. Kovarik, S. Lin, H. Guo, Y. Wang, and A. K. Datye, ACS Catal. 9, 3978 (2019). doi: 10.1021/acscatal.8b04885
    C. Riley, S. Zhou, D. Kunwar, A. De La Riva, E. Peterson, R. Payne, L. Gao, S. Lin, H. Guo, and A. Datye, J. Am. Chem. Soc. 140, 12964 (2018). doi: 10.1021/jacs.8b07789
    Q. Wan, V. Fung, S. Lin, Z. Wu, and D. e. Jiang, J. Mater. Chem. A 8, 4362 (2020). doi: 10.1039/C9TA11712A
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). doi: 10.1103/PhysRevB.13.5188
    G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000). doi: 10.1063/1.1329672
    K. Takahashi, H. Kobayashi, and N. Takezawa, Chem. Lett. 14, 759 (1985). doi: 10.1246/cl.1985.759
    B. E. Hayden, K. Prince, D. P. Woodruff, and A. M. Bradshaw, Surf. Sci. 133, 589 (1983). doi: 10.1016/0039-6028(83)90021-3
    A. Sotiropoulos, P. K. Milligan, B. C. C. Cowie, and M. Kadodwala, Surf. Sci. 444, 52 (2000). doi: 10.1016/S0039-6028(99)01050-X
  • CJCP2204075SP.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (465) PDF downloads(57) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint