Volume 35 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Wen-De Hu, Jun Ke, Yang-Dong Wang, Chuan-Ming Wang, Wei-Min Yang. Insights into Syngas to Methanol Conversion on Cr2O3 Oxide from First-Principles-based Microkinetic Simulations[J]. Chinese Journal of Chemical Physics , 2022, 35(4): 655-663. doi: 10.1063/1674-0068/cjcp2204066
Citation: Wen-De Hu, Jun Ke, Yang-Dong Wang, Chuan-Ming Wang, Wei-Min Yang. Insights into Syngas to Methanol Conversion on Cr2O3 Oxide from First-Principles-based Microkinetic Simulations[J]. Chinese Journal of Chemical Physics , 2022, 35(4): 655-663. doi: 10.1063/1674-0068/cjcp2204066

Insights into Syngas to Methanol Conversion on Cr2O3 Oxide from First-Principles-based Microkinetic Simulations

doi: 10.1063/1674-0068/cjcp2204066
More Information
  • Cr$ _2 $O$ _3 $ has been recognized as a key oxide component in bifunctional catalysts to produce bridging intermediate, e.g., methanol, from syngas. By combining density functional theory calculations and microkinetic modeling, we computationally studied the surface structures and catalytic activities of bare Cr$ _2 $O$ _3 $ (001) and (012) surfaces, and two reduced (012) surfaces covered with dissociative hydrogens or oxygen vacancies. The reduction of (001) surface is much more difficult than that of (012) surface. The stepwise or the concerted reaction pathways were explored for the syngas to methanol conversion, and the hydrogenation of CO or CHO is identified as rate-determining step. Microkinetic modeling reveals that (001) surface is inactive for the reaction, and the rates of both reduced (012) surfaces (25-28 s$ ^{-1} $) are about five times higher than bare (012) surface (4.3 s$ ^{-1} $) at 673 K. These theoretical results highlight the importance of surface reducibility on the reaction and may provide some implications on the design of individual component in bifunctional catalysis.


  • Part of Special Topic "the 1st Young Scientist Symposium on Computational Catalysis".
  • loading
  • [1]
    X. Pan, F. Jiao, D. Miao, and X. Bao, Chem. Rev. 121, 6588 (2021). doi: 10.1021/acs.chemrev.0c01012
    A. Y. Khodakov, W. Chu, and P. Fongarland, Chem. Rev. 107, 1692 (2007). doi: 10.1021/cr050972v
    W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, and Y. Wang, Catal. Sci. Technol. 48, 3193 (2019).
    R. A. Friedel and R. B. Anderson, J. Am. Chem. Soc. 72, 1212 (2002).
    C. D. Chang and A. J. Silvestri, J. Catal. 47, 249 (1977). doi: 10.1016/0021-9517(77)90172-5
    P. Tian, Y. Wei, M. Ye, and Z. Liu, ACS Catal. 5, 1922 (2015). doi: 10.1021/acscatal.5b00007
    C. Qingling, Y. Weimin, and T. Jiawei, Chin. J. Catal. 34, 217 (2013).
    F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, and X. Bao, Science 351, 1065 (2016). doi: 10.1126/science.aaf1835
    K. Cheng, B. Gu, X. Liu, J. Kang, Q. Zhang, and Y. Wang, Angew. Chem. Int. Ed. 55, 4725 (2016). doi: 10.1002/anie.201601208
    F. Jiao, X. Pan, K. Gong, Y. Chen, G. Li, and X. Bao, Angew. Chem. Int. Ed. 57, 4692 (2018). doi: 10.1002/anie.201801397
    Y. Zhu, X. Pan, F. Jiao, J. Li, J. Yang, M. Ding, Y. Han, Z. Liu, and X. Bao, ACS Catal. 7, 2800 (2017). doi: 10.1021/acscatal.7b00221
    J. Yang, X. Pan, F. Jiao, J. Li, and X. Bao, Chem. Commun. 53, 11146 (2017). doi: 10.1039/C7CC04768A
    C. M. Wang, Y. D. Wang, and Z. K. Xie, Catal. Sci. Technol. 6, 6644 (2016). doi: 10.1039/C6CY01095D
    W. D. Hu, Y. D. Wang, and C. M. Wang, Chem. Ind. Eng. Prog. (2022). DOI: 10.16085/j.issn.1000-6613.2021-2344
    Z. X. Zhang, P. Y. Bi, P. W. Jiang, and Q. X. Li, Chin. J. Chem. Phys. 27, 573 (2014). doi: 10.1063/1674-0068/27/05/573-581
    N. Li, F. Jiao, X. Pan, Y. Ding, J. Feng, and X. Bao, ACS Catal. 9, 960 (2018).
    S. Tian, L. Tan, Y. Wu, Y. Kou, H. Xie, N. Tsubaki, and Y. Tan, Appl. Catal. A 536, 57 (2017). doi: 10.1016/j.apcata.2017.02.016
    L. Ren, J. Zhang, B. Wang, H. Xu, J. Jiang, Y. Guan, and P. Wu, Fuel 307, 121916 (2022). doi: 10.1016/j.fuel.2021.121916
    Y. Ni, Y. Liu, Z. Chen, M. Yang, H. Liu, Y. He, Y. Fu, W. Zhu, and Z. Liu, ACS Catal. 9, 1026 (2018).
    M. Wang, J. Kang, X. Xiong, F. Zhang, K. Cheng, Q. Zhang, and Y. Wang, Catal. Today 371, 85 (2021). doi: 10.1016/j.cattod.2020.07.076
    C. Liu, J. Su, S. Liu, H. Zhou, X. Yuan, Y. Ye, Y. Wang, W. Jiao, L. Zhang, Y. Lu, Y. Wang, H. He, and Z. Xie, ACS Catal. 10, 15227 (2020). doi: 10.1021/acscatal.0c03658
    C. Liu, S. Liu, H. Zhou, J. Su, W. Jiao, L. Zhang, Y. Wang, H. He, and Z. Xie, Appl. Catal. A 585, 117206 (2019). doi: 10.1016/j.apcata.2019.117206
    S. Wang, L. Zhang, P. Wang, X. Liu, Y. Chen, Z. Qin, M. Dong, J. Wang, L. He, U. Olsbye, and W. Fan, Chemistry 8, 1 (2022). doi: 10.1016/j.chempr.2021.12.020
    Y. Wang, G. Wang, L. I. van der Wal, K. Cheng, Q. Zhang, K. P. de Jong, and Y. Wang, Angew. Chem. Int. Ed. 60, 17735 (2021). doi: 10.1002/anie.202107264
    C. Liu, J. Su, Y. Xiao, J. Zhou, S. Liu, H. Zhou, Y. Ye, Y. Lu, Y. Zhang, W. Jiao, L. Zhang, Y. Wang, C. Wang, X. Zheng, and Z. Xie, Chem. Catal. 1, 896 (2021). doi: 10.1016/j.checat.2021.06.016
    J. Su, D. Wang, Y. Wang, H. Zhou, C. Liu, S. Liu, C. Wang, W. Yang, Z. Xie, and M. He, ChemCatChem 10, 1536 (2018). doi: 10.1002/cctc.201702054
    H. Song, C. Watermann, D. Laudenschleger, F. Yang, H. Ruland, and M. Muhler, Mol. Catal. 451, 76 (2018). doi: 10.1016/j.mcat.2017.10.033
    Y. Wang, L. Tan, M. Tan, P. Zhang, Y. Fang, Y. Yoneyama, G. Yang, and N. Tsubaki, ACS Catal. 9, 895 (2019). doi: 10.1021/acscatal.8b01344
    S. De Rossi, G. Ferraris, S. Fremiotti, E. Garrone, G. Ghiotti, M. C. Campa, and V. Indovina, J. Catal. 148, 36 (1994). doi: 10.1006/jcat.1994.1183
    M. Cherian, M. S. Rao, A. M. Hirt, I. E. Wachs, and G. Deo, J. Catal. 211, 482 (2002). doi: 10.1016/S0021-9517(02)93759-0
    Y. J. Tu, Y. W. Chen, and C. Li, J. Mol. Catal. 89, 179 (1994). doi: 10.1016/0304-5102(93)E0331-A
    P. H. Finger, T. A. Osmari, M. S. Costa, J. M. C. Bueno, and J. M. R. Gallo, Appl. Catal. A 589, 117236 (2020). doi: 10.1016/j.apcata.2019.117236
    W. Lu, X. Zhao, H. Wang, and W. Xiao, Chin. J. Catal. 21, 423 (2000).
    R. Ma, P. Hu, L. Jin, Y. Wang, J. Lu, and M. Luo, Catal. Today 175, 598 (2011). doi: 10.1016/j.cattod.2011.04.025
    H. Rotter, M. V. Landau, M. Carrera, D. Goldfarb, and M. Herskowitz, Appl. Catal. B 47, 111 (2004). doi: 10.1016/j.apcatb.2003.08.006
    A. Wang, B. Lin, H. Zhang, M. H. Engelhard, Y. Guo, G. Lu, C. H. F. Peden, and F. Gao, Catal. Sci. Technol. 7, 2362 (2017). doi: 10.1039/C7CY00490G
    R. G. Herman, Stud. Surf. Sci. Catal. 64, 265 (1991).
    W. S. Epling, G. B. Hoflund, W. M. Hart, and D. M. Minahan, J. Catal. 169, 438 (1997). doi: 10.1006/jcat.1997.1725
    M. C. J. Bradford, M. V. Konduru, and D. X. Fuentes, Fuel Process. Technol. 83, 11 (2003). doi: 10.1016/S0378-3820(03)00080-8
    B. T. Sone, E. Manikandan, A. Gurib-Fakim, and M. Maaza, Green Chem. Lett. Rev. 9, 85 (2016). doi: 10.1080/17518253.2016.1151083
    K. Jiao, B. Zhang, B. Yue, Y. Ren, S. Liu, S. Yan, C. Dickinson, W. Zhou, and H. He, Chem. Commun. 45, 5618 (2005).
    W. D. Hu, C. M. Wang, Y. D. Wang, J. Ke, G. Yang, Y. J. Du, and W. M. Yang, Appl. Surf. Sci. 569, 151064 (2021). doi: 10.1016/j.apsusc.2021.151064
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011). doi: 10.1002/jcc.21759
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    J. Jin, N. Sun, W. Hu, H. Yuan, H. Wang, and P. Hu, ACS Catal. 8, 5415 (2018). doi: 10.1021/acscatal.8b00081
    F. Lebreau, M. M. Islam, B. Diawara, and P. Marcus, J. Phys. Chem. C 118, 18133 (2014). doi: 10.1021/jp5039943
    A. Rohrbach, J. Hafner, and G. Kresse, Phys. Rev. B 70, 125426 (2004). doi: 10.1103/PhysRevB.70.125426
    G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999). doi: 10.1063/1.480097
    A. J. Medford, C. Shi, M. J. Hoffmann, A. C. Lausche, S. R. Fitzgibbon, T. Bligaard, and J. K. Nørskov, Catal. Lett. 145, 794 (2015). doi: 10.1007/s10562-015-1495-6
    R. R. John, CRC Handbook of Chemistry and Physics, 99th Edn., Boca Raton: CRC Press (2018).
    C. T. Campbell, J. Catal. 204, 520 (2001). doi: 10.1006/jcat.2001.3396
    C. Stegelmann, A. Andreasen, and C. T. Campbell, J. Am. Chem. Soc. 131, 8077 (2009). doi: 10.1021/ja9000097
    R. Dronskowski and P. E. Bloechl, J. Phys. Chem. 97, 8617 (1993). doi: 10.1021/j100135a014
  • CJCP2204066SP.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (355) PDF downloads(29) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint