Volume 35 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Guang-Jie Xia, Yang-Gang Wang. Dynamic Simulation on Surface Hydration and Dehydration of Monoclinic Zirconia[J]. Chinese Journal of Chemical Physics , 2022, 35(4): 629-638. doi: 10.1063/1674-0068/cjcp2204062
Citation: Guang-Jie Xia, Yang-Gang Wang. Dynamic Simulation on Surface Hydration and Dehydration of Monoclinic Zirconia[J]. Chinese Journal of Chemical Physics , 2022, 35(4): 629-638. doi: 10.1063/1674-0068/cjcp2204062

Dynamic Simulation on Surface Hydration and Dehydration of Monoclinic Zirconia

doi: 10.1063/1674-0068/cjcp2204062
More Information
  • Corresponding author: Yang-Gang Wang, E-mail: wangyg@sustech.edu.cn
  • Received Date: 2022-04-12
  • Accepted Date: 2022-05-09
  • Publish Date: 2022-08-27
  • The commonly used oxide-supported metal catalysts are usually prepared in aqueous phase, which then often need to undergo calcination before usage. Therefore, the surface hydration and dehydration of oxide supports are critical for the realistic modeling of supported metal catalysts. In this work, by ab initio molecular dynamics (AIMD) simulations, the initial anhydrous monoclinic ZrO$_2$(111) surfaces are evaluated within explicit solvents in aqueous phase at mild temperatures. During the simulations, all the two-fold-coordinated O sites will soon be protonated to form the acidic hydroxyls (HO$_{\rm{L}}$), remaining the basic hydroxyls (HO*) on Zr. The basic hydroxyls (HO*) can easily diffuse on surfaces via the active proton exchange with the undissociated adsorption water (H$_2$O*). Within the temperatures ranging from 273 K to 373 K, in aqueous phase a certain representative equilibrium hydrated m-ZrO$_2$(111) surface is obtained with the coverage ($\theta$) of 0.75 on surface Zr atoms. Later, free energies on the stepwise surface water desorption are calculated by density functional theory to mimic the surface dehydration under the mild calcination temperatures lower than 800 K. By obtaining the phase diagrams of surface dehydration, the representative partially hydrated m-ZrO$_2$(111) surfaces (0.25$\leq$$\theta$ < 0.75) at various calcination temperatures are illustrated. These hydrated m-ZrO$_2$(111) surfaces can be crucial and readily applied for more realistic modeling of ZrO$_2$ catalysts and ZrO$_2$-supported metal catalysts.


  • Part of Special Topic "the 1st Young Scientist Symposium on Computational Catalysis".
  • loading
  • [1]
    P. Munnik, P. E. De Jongh, and K. P. De Jong, Chem. Rev. 115, 6687 (2015). doi: 10.1021/cr500486u
    B. A. T. Mehrabadi, S. Eskandari, U. Khan, R. D. White, and J. R. Regalbuto, Adv. Catal. 61, 1 (2017).
    Q. Cai, J. A. Lopez-Ruiz, A. R. Cooper, J. G. Wang, K. O. Albrecht, and D. Mei, ACS Catal. 8, 488 (2018). doi: 10.1021/acscatal.7b03298
    Y. Zhao, X. Zhu, H. Wang, J. Han, D. Mei, and Q. Ge, ChemCatChem 12, 1220 (2020). doi: 10.1002/cctc.201901736
    W. Huang, A. C. Johnston-Peck, T. Wolter, W. C. D. Yang, L. Xu, J. Oh, B. A. Reeves, C. Zhou, M. E. Holtz, A. A. Herzing, A. M. Lindenberg, M. Mavrikakis, and M. Cargnello, Science 373, 1518 (2021). doi: 10.1126/science.abj5291
    C. H. Hu, C. Chizallet, C. Mager-Maury, M. Corral-Valero, P. Sautet, H. Toulhoat, and P. Raybaud, J. Catal. 274, 99 (2010). doi: 10.1016/j.jcat.2010.06.009
    H. Shi, J. A. Lercher, and X. Y. Yu, Catal. Sci. Technol. 5, 3035 (2015). doi: 10.1039/C4CY01720J
    G. J. Xia and Y. G. Wang, J. Catal. 404, 537 (2021). doi: 10.1016/j.jcat.2021.10.030
    M. Sun, A. Zhao, D. Wang, V. G. Zavodinsky, and A. N. Chibisov, J. Phys. Conf. Ser. 29, 173 (2006). doi: 10.1088/1742-6596/29/1/033
    M. Durandurdu, Europhys. Lett. 88, 66001 (2009). doi: 10.1209/0295-5075/88/66001
    C. A. Franchini, A. M. Duarte de Farias, E. M. Albuquerque, R. dos Santos, and M. A. Fraga, Appl. Catal. B: Environ 117-118, 302 (2012). doi: 10.1016/j.apcatb.2012.01.028
    M. M. Kauppinen, M. M. Melander, A. S. Bazhenov, and K. Honkala, ACS Catal. 8, 11633 (2018). doi: 10.1021/acscatal.8b02596
    A. A. Vedyagin, A. M. Volodin, R. M. Kenzhin, V. V. Chesnokov, and I. V. Mishakov, Molecules 21, 1289 (2016). doi: 10.3390/molecules21101289
    Y. Guo, G. Lu, Z. Zhang, L. Jiang, X. Wang, S. Li, B. Zhang, and J. Niu, Catal. Today 126, 441 (2007). doi: 10.1016/j.cattod.2007.06.015
    E. Bekyarova, P. Fornasiero, J. Kašpar, and M. Graziani, Catal. Today 45, 179 (1998). doi: 10.1016/S0920-5861(98)00212-0
    C. Wu, L. Lin, J. Liu, J. Zhang, F. Zhang, T. Zhou, N. Rui, S. Yao, Y. Deng, F. Yang, W. Xu, J. Luo, Y. Zhao, B. Yan, X. D. Wen, J. A. Rodriguez, and D. Ma, Nat. Commun. 11, 1 (2020). doi: 10.1038/s41467-019-13993-7
    M. Zabilskiy, K. Ma, A. Beck, and J. A. Van Bokhoven, Catal. Sci. Technol. 11, 349 (2021). doi: 10.1039/D0CY01762K
    W. S. Epling and G. B. Hoflund, J. Catal. 182, 5 (1999). doi: 10.1006/jcat.1998.2341
    C. Chen, Y. H. Yeh, M. Cargnello, C. B. Murray, P. Fornasiero, and R. J. Gorte, ACS Catal. 4, 3902 (2014). doi: 10.1021/cs501146u
    C. A. Teles, R. C. Rabelo-Neto, G. Jacobs, B. H. Davis, D. E. Resasco, and F. B. Noronha, ChemCatChem 9, 2850 (2017). doi: 10.1002/cctc.201700047
    P. M. De Souza, R. C. Rabelo-Neto, L. E. P. Borges, G. Jacobs, B. H. Davis, T. Sooknoi, D. E. Resasco, and F. B. Noronha, ACS Catal. 5, 1318 (2015). doi: 10.1021/cs501853t
    N. B. Jackson and J. G. Ekerdt, J. Catal. 101, 90 (1986). doi: 10.1016/0021-9517(86)90232-0
    T. Nozawa, S. Sato, and R. Takahashi, Top. Catal. 52, 609 (2009). doi: 10.1007/s11244-009-9198-0
    J. A. Lopez-Ruiz, A. R. Cooper, G. Li, and K. O. Albrecht, ACS Catal. 7, 6400 (2017). doi: 10.1021/acscatal.7b01071
    S. Wang and E. Iglesia, J. Catal. 345, 183 (2017). doi: 10.1016/j.jcat.2016.11.006
    P. D. L. Mercera, J. G. van Ommen, E. B. M. Doesburg, A. J. Burggraaf, and J. R. H. Ross, Appl. Catal. 71, 363 (1991). doi: 10.1016/0166-9834(91)85092-A
    W. Piskorz, J. Gryboś, F. Zasada, S. Cristol, J. F. Paul, A. Adamski, and Z. Sojka, J. Phys. Chem. C 115, 24274 (2011). doi: 10.1021/jp2086335
    A. S. Bazhenov and K. Honkala, Top. Catal. 60, 382 (2017). doi: 10.1007/s11244-016-0701-0
    K. Tanabe and T. Yamaguchi, Catal. Today 20, 185 (1994). doi: 10.1016/0920-5861(94)80002-2
    G. Cerrato, S. Bordiga, S. Barbera, and C. Morterra, Appl. Surf. Sci. 115, 53 (1997). doi: 10.1016/S0169-4332(96)00586-7
    Y. X. Wang and G. C. Wang, Catal. Sci. Technol. 10, 876 (2020). doi: 10.1039/C9CY02287B
    F. Wang, W. Xia, X. Mu, K. Chen, H. Si, and Z. Li, Appl. Surf. Sci. 439, 405 (2018). doi: 10.1016/j.apsusc.2017.12.253
    S. T. Korhonen, M. Calatayud, and A. O. I. Krause, J. Phys. Chem. C 112, 6469 (2008). doi: 10.1021/jp8008546
    T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, and J. Hutter, J. Chem. Phys. 152, 194103 (2020). doi: 10.1063/5.0007045
    S. Goedecker and M. Teter, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 1703 (1996). doi: 10.1103/PhysRevB.54.1703
    G. Lippert, J. Hutter, and M. Parrinello, Theor. Chem. Acc. 103, 124 (1999). doi: 10.1007/s002140050523
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). doi: 10.1063/1.3382344
    S. Nosé, J. Chem. Phys. 81, 511 (1984). doi: 10.1063/1.447334
    G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
    D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999). doi: 10.1103/PhysRevB.59.1758
    J. Zhu, J. G. van Ommen, and L. Lefferts, Catal. Today 117, 163 (2006). doi: 10.1016/j.cattod.2006.05.046
    M. A. Henderson, Surf. Sci. 355, 151 (1996). doi: 10.1016/0039-6028(95)01357-1
    Z. Geng, X. Jin, R. Wang, X. Chen, Q. Guo, Z. Ma, D. Dai, H. Fan, and X. Yang, J. Phys. Chem. C 122, 10956 (2018). doi: 10.1021/acs.jpcc.8b02945
    M. C. Deibert and R. Kahraman, Appl. Surf. Sci. 37, 327 (1989). doi: 10.1016/0169-4332(89)90494-7
    Q. Zhao, X. Wang, and T. Cai, Appl. Surf. Sci. 225, 7 (2004). doi: 10.1016/S0169-4332(03)00832-8
    A. Christensen and E. A. Carter, Phys. Rev. B: Condens. Matter Mater. Phys. 58, 8050 (1998). doi: 10.1103/PhysRevB.58.8050
    O. A. Syzgantseva, M. Calatayud, and C. Minot, J. Phys. Chem. C 116, 6636 (2012). doi: 10.1021/jp209898q
    T. P. Straatsma, H. J. C. Berendsen, and J. P. M. Postma, J. Chem. Phys. 85, 6720 (1986). doi: 10.1063/1.451846
    D. C. Cantu, Y. G. Wang, Y. Yoon, V. A. Glezakou, R. Rousseau, and R. S. Weber, Catal. Today 289, 231 (2017). doi: 10.1016/j.cattod.2016.08.025
  • CJCP2204062SP.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (582) PDF downloads(58) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint