Volume 35 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Siting Hou, Chaofan Li, Huixian Han, Changjian Xie. EOM-CCSD-Based Neural Network Diabatic Potential Energy Matrix for $ ^\textbf{1} $$ \mathit{\boldsymbol{\pi}} $$ \mathit{\boldsymbol{\sigma^*}} $-Mediated Photodissociation of Thiophenol[J]. Chinese Journal of Chemical Physics , 2022, 35(3): 461-470. doi: 10.1063/1674-0068/cjcp2201016
Citation: Siting Hou, Chaofan Li, Huixian Han, Changjian Xie. EOM-CCSD-Based Neural Network Diabatic Potential Energy Matrix for $ ^\textbf{1} $$ \mathit{\boldsymbol{\pi}} $$ \mathit{\boldsymbol{\sigma^*}} $-Mediated Photodissociation of Thiophenol[J]. Chinese Journal of Chemical Physics , 2022, 35(3): 461-470. doi: 10.1063/1674-0068/cjcp2201016

EOM-CCSD-Based Neural Network Diabatic Potential Energy Matrix for $ ^\textbf{1} $$ \mathit{\boldsymbol{\pi}} $$ \mathit{\boldsymbol{\sigma^*}} $-Mediated Photodissociation of Thiophenol

doi: 10.1063/1674-0068/cjcp2201016
More Information
  • Corresponding author: Huixian Han, E-mail: hxhan@nwu.edu.cn; Changjian Xie, E-mail: chjxie@nwu.edu.cn
  • Received Date: 2022-01-20
  • Accepted Date: 2022-02-12
  • Publish Date: 2022-06-27
  • A new diabatic potential energy matrix (PEM) of the coupled $ ^1 $$ \pi\pi^* $ and $ ^1\pi\sigma^* $ states for the $ ^1\pi\sigma^* $-mediated photodissociation of thiophenol was constructed using a neural network (NN) approach. The diabatization of the PEM was specifically achieved by our recent method [Chin. J. Chem. Phys. 34 , 825 (2021)], which was based on adiabatic energies without the associated costly derivative couplings. The equation of motion coupled cluster with single and double excitations (EOM-CCSD) method was employed to compute adiabatic energies of two excited states in this work due to its high accuracy, simplicity, and efficiency. The PEM includes three dimensionalities, namely the S-H stretch, C-S-H bend, and C-C-S-H torsional coordinates. The root mean square errors of the NN fitting for the S$ _1 $ and S$ _2 $ states are 0.89 and 1.33 meV, respectively, suggesting the high accuracy of the NN method as expected. The calculated lifetimes of the S$ _1 $ vibronic 0$ ^0 $ and 3$ ^1 $ states are found to be in reasonably good agreement with available theoretical and experimental results, which validates the new EOM-CCSD-based PEM fitted by the NN approach. The combination of the diabatization scheme solely based on the adiabatic energies and the use of EOM-CCSD method makes the construction of reliable diabatic PEM quite simple and efficient.

     

  • Part of Special Topic "Quantum and Classical Dynamics in Chemistry" in the 32nd Chinese Chemical Society Congress.
  • loading
  • [1]
    M. N. R. Ashfold, B. Cronin, A. L. Devine, R. N. Dixon, and M. G. D. Nix, Science 312, 1637 (2006). doi: 10.1126/science.1125436
    [2]
    M. N. R. Ashfold, A. L. Devine, R. N. Dixon, G. A. King, M. G. D. Nix, and T. A. A. Oliver, Proc. Natl. Acad. Sci. USA 105, 12701 (2008). doi: 10.1073/pnas.0800463105
    [3]
    B. Cronin, M. G. D. Nix, R. H. Qadiri, and M. N. R. Ashfold, Phys. Chem. Chem. Phys. 6, 5031 (2004). doi: 10.1039/b411589a
    [4]
    C. Xie, J. Ma, X. Zhu, D. R. Yarkony, D. Xie, and H. Guo, J. Am. Chem. Soc. 138, 7828 (2016). doi: 10.1021/jacs.6b03288
    [5]
    T. N. V. Karsili, A. M. Wenge, S. J. Harris, D. Murdock, J. N. Harvey, R. N. Dixon, and M. N. R. Ashfold, Chem. Sci. 4, 2434 (2013). doi: 10.1039/c3sc50296a
    [6]
    X. F. Xu, J. J. Zheng, K. R. Yang, and D. G. Truhlar, J. Am. Chem. Soc. 136, 16378 (2014). doi: 10.1021/ja509016a
    [7]
    C. Xie, B. Zhao, C. L. Malbon, D. R. Yarkony, D. Xie, and H. Guo, J. Phys. Chem. Lett. 11, 191 (2020). doi: 10.1021/acs.jpclett.9b03407
    [8]
    H. Kang, K. T. Lee, B. Jung, Y. J. Ko, and S. K. Kim, J. Am. Chem. Soc. 124, 12958 (2002). doi: 10.1021/ja027627x
    [9]
    L. A. Baker, B. Marchetti, T. N. V. Karsili, V. G. Stavros, and M. N. R. Ashfold, Chem. Soc. Rev. 46, 3770 (2017). doi: 10.1039/C7CS00102A
    [10]
    H. S. You, S. Han, J. H. Yoon, J. S. Lim, J. Lee, S. Y. Kim, D. S. Ahn, J. S. Lim, and S. K. Kim, Int. Rev. Phys. Chem. 34, 429 (2015). doi: 10.1080/0144235X.2015.1072364
    [11]
    V. Ovejas, M. Fernandez-Fernandez, R. Montero, and A. Longarte, Chem. Phys. Lett. 661, 206 (2016). doi: 10.1016/j.cplett.2016.08.082
    [12]
    H. S. You, S. Han, J. S. Lim, and S. K. Kim, J. Phys. Chem. Lett. 6, 3202 (2015). doi: 10.1021/acs.jpclett.5b01420
    [13]
    A. L. Devine, M. G. D. Nix, R. N. Dixon, and M. N. R. Ashfold, J. Phys. Chem. A 112, 9563 (2008). doi: 10.1021/jp802019v
    [14]
    I. S. Lim, J. S. Lim, Y. S. Lee, and S. K. Kim, J. Chem. Phys. 126, 034306 (2007). doi: 10.1063/1.2424939
    [15]
    M. G. D. Nix, A. L. Devine, R. N. Dixon, and M. N. R. Ashfold, Chem. Phys. Lett. 463, 305 (2008). doi: 10.1016/j.cplett.2008.08.085
    [16]
    M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 (1927).
    [17]
    M. Baer, Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections, New Jersey: John Wiley & Sons, (2006).
    [18]
    I. G. Ryabinkin and A. F. Izmaylov, Phys. Rev. Lett. 111, 220406 (2013). doi: 10.1103/PhysRevLett.111.220406
    [19]
    C. Xie, D. R. Yarkony, and H. Guo, Phys. Rev. A 95, 022104 (2017). doi: 10.1103/PhysRevA.95.022104
    [20]
    H. Guo and D. R. Yarkony, Phys. Chem. Chem. Phys. 18, 26335 (2016). doi: 10.1039/C6CP05553B
    [21]
    L. Zhang, D. C. Truhlar, and S. Sun, J. Chem. Phys. 151, 154306 (2019). doi: 10.1063/1.5124870
    [22]
    T. S. Venkatesan, S. G. Ramesh, Z. Lan, and W. Domcke, J. Chem. Phys. 136, 174312 (2012). doi: 10.1063/1.4709608
    [23]
    G. S. M. Lin, C. Xie, and D. Xie, J. Phys. Chem. A 121, 8432 (2017). doi: 10.1021/acs.jpca.7b09070
    [24]
    G. S. M. Lin, C. Xie, and D. Xie, J. Phys. Chem. A 122, 5375 (2018).
    [25]
    C. Li, S. Hou, and C. Xie, Chin. J. Chem. Phys. 34, 825 (2021). doi: 10.1063/1674-0068/cjcp2110196
    [26]
    Y. Guan, C. Xie, D. R. Yarkony, and H. Guo, Phys. Chem. Chem. Phys. 23, 24962 (2021). doi: 10.1039/D1CP03008F
    [27]
    X. L. Zhu and D. R. Yarkony, J. Chem. Phys. 140, 024112 (2014). doi: 10.1063/1.4857335
    [28]
    T. Korona and H. J. Werner, J. Chem. Phys. 118, 3006 (2003). doi: 10.1063/1.1537718
    [29]
    S. Ren, J. Harms, and M. Caricato, J. Chem. Theory Comput. 13, 117 (2017). doi: 10.1021/acs.jctc.6b01053
    [30]
    M. Ben-Nun, F. Molnar, K. Schulten, and T. J. Martínez, Proc. Nat. Acad. Sci. USA 99, 1769 (2002). doi: 10.1073/pnas.032658099
    [31]
    C. Xie, C. L. Malbon, D. R. Yarkony, and H. Guo, J. Chem. Phys. 147, 044109 (2017). doi: 10.1063/1.4990002
    [32]
    B. E. Applegate, T. A. Barckholtz, and T. A. Miller, Chem. Soc. Rev. 32, 38 (2003). doi: 10.1039/A910269H
    [33]
    A. E. Azhary, G. Rauhut, P. Pulay, and H. J. Werner, J. Chem. Phys. 108, 5185 (1998). doi: 10.1063/1.475955
    [34]
    D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993). doi: 10.1063/1.464303
    [35]
    R. A. Kendall and T. H. Dunning Jr., J. Chem. Phys. 96, 6796 (1992). doi: 10.1063/1.462569
    [36]
    T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989). doi: 10.1063/1.456153
    [37]
    C. Hampel, K. A. Peterson, and H. J. Werner, Chem. Phys. Lett. 190, 1 (1992). doi: 10.1016/0009-2614(92)86093-W
    [38]
    H. J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985). doi: 10.1063/1.448627
    [39]
    P. J. Knowles and H. J. Werner, Chem. Phys. Lett. 115, 259 (1985). doi: 10.1016/0009-2614(85)80025-7
    [40]
    MOLPRO, Version 2015.1, a Package of Ab initio Programs, H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. Miller Ⅲ, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, T. Petrenko, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and M. Welborn, see http://www.molpro.net.
    [41]
    K. Shao, J. Chen, Z. Zhao, and D. H. Zhang, J. Chem. Phys. 145, 071101 (2016). doi: 10.1063/1.4961454
    [42]
    J. Behler, Phys. Chem. Chem. Phys. 13, 17930 (2011). doi: 10.1039/c1cp21668f
    [43]
    B. Jiang, J. Li, and H. Guo, Int. Rev. Phys. Chem. 35, 479 (2016). doi: 10.1080/0144235X.2016.1200347
    [44]
    L. M. Raff, R. Komanduri, M. Hagan, and S. T. S. Bukkapatnam, Neural Networks in Chemical Reaction Dynamics, New York: Oxford University Press, (2012).
    [45]
    D. W. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963). doi: 10.1137/0111030
    [46]
    N. W. Larsen and F. M. Nicolaisen, J. Mol. Struct. 22, 29 (1974). doi: 10.1016/0022-2860(74)80065-7
    [47]
    B. D. Saksena and P. H. Trevedi, Trans. Faraday Soc. 58, 2082 (1962). doi: 10.1039/tf9625802082
    [48]
    C. Xie, B. K. Kendrick, D. R. Yarkony, and H. Guo, J. Chem. Theory Comput. 13, 1902 (2017). doi: 10.1021/acs.jctc.7b00124
    [49]
    F. Bouakline, Chem. Phys. 442, 31 (2014). doi: 10.1016/j.chemphys.2014.02.010
    [50]
    J. C. Juanes-Marcos, S. C. Althorpe, and E. Wrede, Science 309, 1227 (2005). doi: 10.1126/science.1114890
    [51]
    D. Yuan, Y. Guan, W. Chen, H. Zhao, S. Yu, C. Luo, Y. Tan, T. Xie, X. Wang, Z. Sun, D. H. Zhang, and X. Yang, Science 362, 1289 (2018). doi: 10.1126/science.aav1356
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (315) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return