Volume 35 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Jun Chen, Wei Zhuang. Theoretical Description of Water from Single-Molecule to Condensed Phase: Recent Progress on Potential Energy Surfaces and Molecular Dynamics[J]. Chinese Journal of Chemical Physics , 2022, 35(2): 227-241. doi: 10.1063/1674-0068/cjcp2201005
Citation: Jun Chen, Wei Zhuang. Theoretical Description of Water from Single-Molecule to Condensed Phase: Recent Progress on Potential Energy Surfaces and Molecular Dynamics[J]. Chinese Journal of Chemical Physics , 2022, 35(2): 227-241. doi: 10.1063/1674-0068/cjcp2201005

Theoretical Description of Water from Single-Molecule to Condensed Phase: Recent Progress on Potential Energy Surfaces and Molecular Dynamics

doi: 10.1063/1674-0068/cjcp2201005
More Information
  • In this work, we review recent progress on the view of potential energy surfaces and molecular dynamics study of water and its related reactions in the last decade or so. Some important gas-phase reactions of water with radicals, chemisorbed dissociative dynamics of water on solid surfaces, and statistical mechanics and vibrational spectrum simulations of water from clusters to the condensed phase have been introduced. The recently developed machine learning techniques, such as the neural networks in a combination of permutational invariant polynomials or fundamental invariants, the atomic neural networks framework, the gaussian approximation potentials with the smooth overlap of atomic position kernel, as well as the many-body expansion framework for the construction of highly accurate potential energy surfaces, have also been discussed. Finally, some suggestions have been provided for further improvement of the potential energy surfaces and dynamics methods of water-related systems.

     

  • Part of Special Issue "In Memory of Prof. Nanquan Lou on the occasion of his 100th anniversary".
  • loading
  • [1]
    J. Israelachvili and H. Wennerström, Nature 379, 219 (1996). doi: 10.1038/379219a0
    [2]
    E. A. Vogler, Adv. Colloid Interfac. 74, 69 (1998). doi: 10.1016/S0001-8686(97)00040-7
    [3]
    T. Head-Gordon and G. Hura, Chem. Rev. 102, 2651 (2002). doi: 10.1021/cr0006831
    [4]
    Y. Marcus, Chem. Rev. 109, 1346 (2009). doi: 10.1021/cr8003828
    [5]
    S. Chakraborty, H. Kumar, C. Dasgupta, and P. K. Maiti, Acc. Chem. Res. 50, 2139 (2017). doi: 10.1021/acs.accounts.6b00617
    [6]
    M. Ceriotti, W. Fang, P. G. Kusalik, R. H. McKenzie, A. Michaelides, M. A. Morales, and T. E. Markland, Chem. Rev. 116, 7529 (2016). doi: 10.1021/acs.chemrev.5b00674
    [7]
    Geng and Z. -W. Yu, Chin. Sci. Bull. 61, 3181 (2016). doi: 10.1360/N972016-00924
    [8]
    G. A. Cisneros, K. T. Wikfeldt, L. Ojamäe, J. Lu, Y. Xu, H. Torabifard, A. P. Bartk, G. Csányi, V. Molinero, and F. Paesani, Chem. Rev. 116, 7501 (2016). doi: 10.1021/acs.chemrev.5b00644
    [9]
    K. D. Jordan, Proc. Nat. Acad. Sci. USA 116, 24383 (2019). doi: 10.1073/pnas.1918178116
    [10]
    B. Zhang, Y. Yu, Y. Y. Zhang, S. Jiang, Q. Li, H. S. Hu, G. Li, Z. Zhao, C. Wang, H. Xie, W. Zhang, D. Dai, G. Wu, D. H. Zhang, L. Jiang, J. Li, and X. Yang, Proc. Nat. Acad. Sci. USA 117, 15423 (2020). doi: 10.1073/pnas.2000601117
    [11]
    A. Rognoni, R. Conte, and M. Ceotto, Chem. Sci. 12, 2060 (2021). doi: 10.1039/D0SC05785A
    [12]
    L. Zhang, J. Chen, and B. Jiang, J. Phys. Chem. C 125, 4995 (2021). doi: 10.1021/acs.jpcc.1c00160
    [13]
    M. J. Gillan, D. Alfè, and A. Michaelides, J. Chem. Phys. 144, 130901 (2016). doi: 10.1063/1.4944633
    [14]
    N. Q. Su and X. Xu, WIREs Comput. Mol. Sci. 6, 721 (2016). doi: 10.1002/wcms.1274
    [15]
    I. Y. Zhang and X. Xu, J. Phys. Chem. Lett. 12, 2638 (2021). doi: 10.1021/acs.jpclett.1c00360
    [16]
    F. Paesani, Acc. Chem. Res. 49, 1844 (2016).
    [17]
    Z. Zhang, T. Liu, B. Fu, X. Yang, and D. H. Zhang, Nat. Commun. 7, 11953 (2016). doi: 10.1038/ncomms11953
    [18]
    J. Huang, J. Chen, S. Liu, and D. H. Zhang, J. Phys. Chem. Lett. 11, 8560 (2020). doi: 10.1021/acs.jpclett.0c02606
    [19]
    S. Liu, X. Zhang, J. Chen, and D. H. Zhang, J. Phys. Chem. Lett. 12, 6090 (2021). doi: 10.1021/acs.jpclett.1c01586
    [20]
    M. T. Cvitaš and J. O. Richardson, "Quantum Dynamics in Water Clusters, " in Molecular Spectroscopy and Quantum Dynamics, R. Marquardt and M. Quack Eds., Netherlands: Elsevier, 301-326 (2021).
    [21]
    Q. Yu and J. M. Bowman, J. Am. Chem. Soc. 139, 10984 (2017). doi: 10.1021/jacs.7b05459
    [22]
    Q. Yu and J. M. Bowman, J. Phys. Chem. A 124, 1167 (2020). doi: 10.1021/acs.jpca.9b11983
    [23]
    J. Liu, J. Yang, X. C. Zeng, S. S. Xantheas, K. Yagi, and X. He, Nat. Commun. 12, 6141 (2021). doi: 10.1038/s41467-021-26284-x
    [24]
    E. K. Conway, I. E. Gordon, J. Tennyson, O. L. Polyansky, S. N. Yurchenko, and K. Chance, Atmos. Chem. Phys. 20, 10015 (2020). doi: 10.5194/acp-20-10015-2020
    [25]
    E. Xu, J. Shen, Z. Kou, and S. Li, J. Chem. Phys. 132, 134110 (2010). doi: 10.1063/1.3381891
    [26]
    X. Hu, L. Zhou, and D. Xie, WIREs Comput. Mol. Sci. 8, e1350 (2018).
    [27]
    D. H. Zhang, M. A. Collins, and S. Y. Lee, Science 290, 961 (2000). doi: 10.1126/science.290.5493.961
    [28]
    D. C. Clary, "Theory of reactive collisions at low temperatures, " in Rate Coefficients in Astrochemistry, Astrophysics and Space Science Library, Vol. 146, T. J. Millar and D. A. Williams Eds., Netherlands: Springer, 1-16 (1988).
    [29]
    J. Warnatz, "Rate Coefficients in the C/H/O system, " in Combustion Chemistry, edited by W. Gardiner New York: Springer-Verlag, Chap. 5 (1985).
    [30]
    R. P. A. Bettens, M. A. Collins, M. J. T. Jordan, and D. H. Zhang, J. Chem. Phys. 112, 10162 (2000). doi: 10.1063/1.481657
    [31]
    C. Xiao, X. Xu, S. Liu, T. Wang, W. Dong, T. Yang, Z. Sun, D. Dai, D. H. Zhang, and X. Yang, Science 333, 440 (2011). doi: 10.1126/science.1205770
    [32]
    J. Chen, X. Xu, X. Xu, and D. H. Zhang, J. Chem. Phys. 138, 154301 (2013). doi: 10.1063/1.4801658
    [33]
    J. Chen, X. Xu, and D. H. Zhang, J. Chem. Phys. 138, 221104 (2013). doi: 10.1063/1.4811109
    [34]
    T. B. Blank, S. D. Brown, A. W. Calhoun, and D. J. Doren, J. Chem. Phys. 103, 4129 (1995). doi: 10.1063/1.469597
    [35]
    D. F. R. Brown, M. N. Gibbs, and D. C. Clary, J. Chem. Phys. 105, 7597 (1996). doi: 10.1063/1.472596
    [36]
    L. M. Raff, M. Malshe, M. Hagan, D. I. Doughan, M. G. Rockley, and R. Komanduri, J. Chem. Phys. 122, 084104 (2005). doi: 10.1063/1.1850458
    [37]
    S. Manzhos, X. Wang, R. Dawes, and J. Carrington, Tucker, J. Phys. Chem. A 110, 5295 (2006). doi: 10.1021/jp055253z
    [38]
    J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007). doi: 10.1103/PhysRevLett.98.146401
    [39]
    A. Pukrittayakamee, M. Malshe, M. Hagan, L. M. Raff, R. Narulkar, S. Bukkapatnam, and R. Komanduri, J. Chem. Phys. 130, 134101 (2009). doi: 10.1063/1.3095491
    [40]
    C. M. Handley and P. L. A. Popelier, J. Phys. Chem. A 114, 3371 (2010). doi: 10.1021/jp9105585
    [41]
    J. Behler, Phys. Chem. Chem. Phys. 13, 17930 (2011). doi: 10.1039/c1cp21668f
    [42]
    S. Liu, C. Xiao, T. Wang, J. Chen, T. Yang, X. Xu, D. H. Zhang, and X. Yang, Faraday Discuss. 157, 101 (2012). doi: 10.1039/c2fd20018j
    [43]
    B. Fu, X. Shan, D. H. Zhang, and D. C. Clary, Chem. Soc. Rev. 46, 7625 (2017). doi: 10.1039/C7CS00526A
    [44]
    B. Jiang and H. Guo, J. Chem. Phys. 139, 054112 (2013). doi: 10.1063/1.4817187
    [45]
    J. Li, B. Jiang, and H. Guo, J. Chem. Phys. 139, 204103 (2013). doi: 10.1063/1.4832697
    [46]
    K. Shao, J. Chen, Z. Zhao, and D. H. Zhang, J. Chem. Phys. 145, 071101 (2016). doi: 10.1063/1.4961454
    [47]
    R. Chen, K. Shao, B. Fu, and D. H. Zhang, J. Chem. Phys. 152, 204307 (2020). doi: 10.1063/5.0010104
    [48]
    B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009). doi: 10.1080/01442350903234923
    [49]
    X. Zhang, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 124, 021104 (2006). doi: 10.1063/1.2162532
    [50]
    G. Czakó, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 130, 084301 (2009). doi: 10.1063/1.3068528
    [51]
    G. Czakó and J. M. Bowman, J. Chem. Phys. 136, 044307 (2012). doi: 10.1063/1.3679014
    [52]
    G. Czakó and J. M. Bowman, Proc. Natl. Acad. Sci. USA 109, 7997 (2012). doi: 10.1073/pnas.1202307109
    [53]
    J. Li, Y. Wang, B. Jiang, J. Ma, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Chem. Phys. 136, 041103 (2012). doi: 10.1063/1.3680256
    [54]
    X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014). doi: 10.1063/1674-0068/27/04/373-379
    [55]
    J. Li, J. Chen, Z. Zhao, D. Xie, D. H. Zhang, and H. Guo, J. Chem. Phys. 142, 204302 (2015). doi: 10.1063/1.4921412
    [56]
    D. Lu and J. Li, J. Chem. Phys. 145, 014303 (2016). doi: 10.1063/1.4954765
    [57]
    W. H. Duewer and D. W. Setser, J. Chem. Phys. 58, 2310 (1973). doi: 10.1063/1.1679506
    [58]
    B. S. Agrawalla and D. W. Setser, J. Chem. Phys. 90, 2450 (1986). doi: 10.1021/j100402a039
    [59]
    A. M. Zolot and D. J. Nesbitt, J. Chem. Phys. 129, 184305 (2008). doi: 10.1063/1.2998524
    [60]
    M. Ziemkiewicz and D. J. Nesbitt, J. Chem. Phys. 131, 054309 (2009).
    [61]
    H. Kornweitz and A. Persky, Chem. Phys. Lett. 331, 132 (2000). doi: 10.1016/S0009-2614(00)01177-5
    [62]
    M. P. Deskevich, D. J. Nesbitt, and H. J. Werner, J. Chem. Phys. 120, 7281 (2004). doi: 10.1063/1.1667468
    [63]
    J. Li, R. Dawes, and H. Guo, J. Chem. Phys. 137, 094304 (2012). doi: 10.1063/1.4748857
    [64]
    T. L. Nguyen, J. Li, R. Dawes, J. F. Stanton, and H. Guo, J. Phys. Chem. A 117, 8864 (2013). doi: 10.1021/jp4069448
    [65]
    J. Li and H. Guo, Chin. J. Chem. Phys. 26, 627 (2013). doi: 10.1063/1674-0068/26/06/627-634
    [66]
    J. Li, B. Jiang, and H. Guo, Chem. Sci. 4, 629 (2013). doi: 10.1039/C2SC21457A
    [67]
    J. Li, B. Jiang, and H. Guo, J. Am. Chem. Soc. 135, 982 (2013). doi: 10.1021/ja311159j
    [68]
    R. Otto, J. Ma, A. W. Ray, J. S. Daluz, J. Li, H. Guo, and R. E. Continetti, Science 343, 396 (2014). doi: 10.1126/science.1247424
    [69]
    J. Ma and H. Guo, J. Phys. Chem. Lett. 6, 4822 (2015). doi: 10.1021/acs.jpclett.5b02366
    [70]
    J. C. Polanyi, Acc. Chem. Res. 5, 161 (1972). doi: 10.1021/ar50053a001
    [71]
    J. C. Polanyi, Angew. Chem. Int. Ed. 26, 952 (1987). doi: 10.1002/anie.198709521
    [72]
    J. B. Kim, M. L. Weichman, T. F. Sjolander, D. M. Neumark, J. Kłos, M. H. Alexander, and D. E. Manolopoulos, Science 349, 510 (2015). doi: 10.1126/science.aac6939
    [73]
    D. Yu, J. Chen, S. Cong, and Z. Sun, J. Phys. Chem. A 119, 12193 (2015).
    [74]
    G. Li, L. Zhou, Q. S. Li, Y. Xie, and H. F. Schaefer, Phys. Chem. Chem. Phys. 14, 10891 (2012). doi: 10.1039/c2cp41555k
    [75]
    X. Zhang, J. Chen, X. Xu, S. Liu, and D. H. Zhang, Phys. Chem. Chem. Phys. 23, 8809 (2021). doi: 10.1039/D1CP00641J
    [76]
    X. Zhang, L. Li, J. Chen, S. Liu, and D. H. Zhang, Nat. Commun. 11, 223 (2020). doi: 10.1038/s41467-019-14097-y
    [77]
    Y. Guo, M. Zhang, Y. Xie, and H. F. Schaefer, J. Chem. Phys. 139, 041101 (2013). doi: 10.1063/1.4816278
    [78]
    J. Li, R. Dawes, and H. Guo, J. Chem. Phys. 139, 074302 (2013). doi: 10.1063/1.4817967
    [79]
    J. Li, H. Song, and H. Guo, Phys. Chem. Chem. Phys. 17, 4259 (2015). doi: 10.1039/C4CP05165C
    [80]
    H. Song, S. Y. Lee, Y. Lu, and H. Guo, J. Phys. Chem. A 119, 12224 (2015).
    [81]
    B. Zhao, Z. Sun, and H. Guo, J. Chem. Phys. 142, 241101 (2015). doi: 10.1063/1.4922650
    [82]
    J. Zuo, Y. Li, H. Guo, and D. Xie, J. Phys. Chem. A 120, 3433 (2016). doi: 10.1021/acs.jpca.6b03488
    [83]
    J. Zuo, B. Zhao, H. Guo, and D. Xie, Phys. Chem. Chem. Phys. 19, 9770 (2017). doi: 10.1039/C7CP00920H
    [84]
    Z. Homayoon and J. M. Bowman, J. Phys. Chem. A 118, 545 (2014). doi: 10.1021/jp410935k
    [85]
    N. Balucani, L. Cartechini, P. Casavecchia, Z. Homayoon, and J. M. Bowman, Mol. Phys. 113, 2296 (2015). doi: 10.1080/00268976.2015.1028499
    [86]
    J. Li, C. Xie, and H. Guo, Phys. Chem. Chem. Phys. 19, 23280 (2017). doi: 10.1039/C7CP04578F
    [87]
    J. Li, R. Dawes, and H. Guo, Phys. Chem. Chem. Phys. 18, 29825 (2016). doi: 10.1039/C6CP06232F
    [88]
    A. Liu and J. Li, Mol. Phys. 119, e1944686 (2021). doi: 10.1080/00268976.2021.1944686
    [89]
    M. Bai, D. Lu, and J. Li, Phys. Chem. Chem. Phys. 19, 17718 (2017). doi: 10.1039/C7CP02656K
    [90]
    Y. Zhu, L. Ping, M. Bai, Y. Liu, H. Song, J. Li, and M. Yang, Phys. Chem. Chem. Phys. 20, 12543 (2018). doi: 10.1039/C8CP00938D
    [91]
    R. Zheng, Y. Zhu, and H. Song, Phys. Chem. Chem. Phys. 21, 24054 (2019). doi: 10.1039/C9CP04721B
    [92]
    H. Song, Y. Zhu, M. Pan, and M. Yang, Phys. Chem. Chem. Phys. 23, 22298 (2021). doi: 10.1039/D1CP03495B
    [93]
    B. Jiang, M. Yang, D. Xie, and H. Guo, Chem. Soc. Rev. 45, 3621 (2016). doi: 10.1039/C5CS00360A
    [94]
    G. J. Kroes, Phys. Chem. Chem. Phys. 23, 8962 (2021). doi: 10.1039/D1CP00044F
    [95]
    B. J. Garrison and D. Srivastava, Annu. Rev. Phys. Chem. 46, 373 (1995). doi: 10.1146/annurev.pc.46.100195.002105
    [96]
    B. Jiang, J. Li, and H. Guo, Int. Rev. Phys. Chem. 35, 479 (2016). doi: 10.1080/0144235X.2016.1200347
    [97]
    T. T. Nguyen, E. Székely, G. Imbalzano, J. Behler, G. Csányi, M. Ceriotti, A. W. Götz, and F. Paesani, J. Chem. Phys. 148, 241725 (2018). doi: 10.1063/1.5024577
    [98]
    B. Jiang, X. Ren, D. Xie, and H. Guo, Proc. Nat. Acad. Sci. USA 109, 10224 (2012). doi: 10.1073/pnas.1203895109
    [99]
    T. Liu, Z. Zhang, B. Fu, X. Yang, and D. H. Zhang, Chem. Sci. 7, 1840 (2016). doi: 10.1039/C5SC03689E
    [100]
    B. Jiang, H. Song, M. Yang, and H. Guo, J. Chem. Phys. 144, 164706 (2016). doi: 10.1063/1.4947492
    [101]
    B. Jiang, M. Alducin, and H. Guo, J. Phys. Chem. Lett. 7, 327 (2016). doi: 10.1021/acs.jpclett.5b02737
    [102]
    T. Liu, J. Chen, Z. Zhang, X. Shen, B. Fu, and D. H. Zhang, J. Chem. Phys. 148, 144705 (2018). doi: 10.1063/1.5023069
    [103]
    D. Migliorini, F. Nattino, A. K. Tiwari, and G. J. Kroes, J. Chem. Phys. 149, 244706 (2018). doi: 10.1063/1.5059357
    [104]
    C. Hu, Y. Zhang, and B. Jiang, J. Phys. Chem. C 124, 23190 (2020). doi: 10.1021/acs.jpcc.0c07182
    [105]
    B. Jiang, D. Xie, and H. Guo, Chem. Sci. 4, 503 (2013). doi: 10.1039/C2SC21393A
    [106]
    T. Liu, Z. Zhang, J. Chen, B. Fu, and D. H. Zhang, Phys. Chem. Chem. Phys. 18, 26358 (2016). doi: 10.1039/C6CP04690H
    [107]
    L. Zhang and B. Jiang, Phys. Rev. Lett. 123, 106001 (2019). doi: 10.1103/PhysRevLett.123.106001
    [108]
    L. Zhang and B. Jiang, J. Chem. Phys. 153, 214702 (2020). doi: 10.1063/5.0030490
    [109]
    P. M. Hundt, B. Jiang, M. E. van Reijzen, H. Guo, and R. D. Beck, Science 344, 504 (2014). doi: 10.1126/science.1251277
    [110]
    B. Jiang and H. Guo, Phys. Rev. Lett. 114, 166101 (2015). doi: 10.1103/PhysRevLett.114.166101
    [111]
    B. Jiang and H. Guo, Phys. Rev. Lett. 124, 149901 (2020). doi: 10.1103/PhysRevLett.124.149901
    [112]
    B. Jiang and H. Guo, J. Chem. Phys. 143, 164705 (2015). doi: 10.1063/1.4934357
    [113]
    B. Jiang, Chem. Sci. 8, 6662 (2017). doi: 10.1039/C7SC02659E
    [114]
    Q. Liu, L. Zhang, Y. Li, and B. Jiang, J. Phys. Chem. Lett. 10, 7475 (2019). doi: 10.1021/acs.jpclett.9b02570
    [115]
    A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett. 104, 136403 (2010). doi: 10.1103/PhysRevLett.104.136403
    [116]
    B. Kolb, X. Luo, X. Zhou, B. Jiang, and H. Guo, J. Phys. Chem. Lett. 8, 666 (2017). doi: 10.1021/acs.jpclett.6b02994
    [117]
    X. Zhou, Y. Zhang, R. Yin, C. Hu, and B. Jiang, Chin. J. Chem. 39, 2917 (2021). doi: 10.1002/cjoc.202100303
    [118]
    B. Jiang and H. Guo, Phys. Chem. Chem. Phys. 18, 21817 (2016). doi: 10.1039/C6CP03707K
    [119]
    Y. Wang, Y. Li, J. Chen, I. Y. Zhang, and X. Xu, JACS Au 1, 543 (2021). doi: 10.1021/jacsau.1c00011
    [120]
    Y. Zhang, X. Xu, and W. A. Goddard, Proc. Natl. Acad. Sci. USA 106, 4963 (2009). doi: 10.1073/pnas.0901093106
    [121]
    I. Y. Zhang, X. Xu, Y. Jung, and W. A. Goddard, W. A., Proc. Natl. Acad. Sci. USA 108, 19896 (2011). doi: 10.1073/pnas.1115123108
    [122]
    B. J. Smith, D. J. Swanton, J. A. Pople, H. F. Schaefer, and L. Radom, J. Chem. Phys. 92, 1240 (1990). doi: 10.1063/1.458133
    [123]
    J. E. Fowler and H. F. I. Schaefer, J. Am. Chem. Soc. 117, 446 (1995). doi: 10.1021/ja00106a051
    [124]
    C. Lee, H. Chen, and G. Fitzgerald, J. Chem. Phys. 101, 4472 (1994). doi: 10.1063/1.467434
    [125]
    B. Temelso, K. A. Archer, and G. C. Shields, J. Phys. Chem. A 115, 12034 (2011). doi: 10.1021/jp2069489
    [126]
    V. Babin, G. R. Medders, and F. Paesani, J. Phys. Chem. Lett. 3, 3765 (2012). doi: 10.1021/jz3017733
    [127]
    E. Miliordos and S. S. Xantheas, J. Chem. Phys. 142, 234303 (2015). doi: 10.1063/1.4922262
    [128]
    S. K. Reddy, S. C. Straight, P. Bajaj, C. Huy Pham, M. Riera, D. R. Moberg, M. A. Morales, C. Knight, A. W. Götz, and F. Paesani, J. Chem. Phys. 145, 194504 (2016). doi: 10.1063/1.4967719
    [129]
    L. Ruiz Pestana, N. Mardirossian, M. Head-Gordon, and T. Head-Gordon, Chem. Sci. 8, 3554 (2017). doi: 10.1039/C6SC04711D
    [130]
    C. C. David, Science 351, 1267 (2016). doi: 10.1126/science.aaf3061
    [131]
    F. N. Keutsch and R. J. Saykally, Proc. Natl. Acad. Sci. USA 98, 10533 (2001). doi: 10.1073/pnas.191266498
    [132]
    C. Aieta, M. Micciarelli, G. Bertaina, and M. Ceotto, Nat. Commun. 11, 4348 (2020). doi: 10.1038/s41467-020-18211-3
    [133]
    C. Pérez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, and B. H. Pate, Science 336, 897 (2012). doi: 10.1126/science.1220574
    [134]
    C. Pérez, S. Lobsiger, N. A. Seifert, D. P. Zaleski, B. Temelso, G. C. Shields, Z. Kisiel, and B. H. Pate, Chem. Phys. Lett. 571, 1 (2013). doi: 10.1016/j.cplett.2013.04.014
    [135]
    C. Pérez, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, and B. H. Pate, Angew. Chem. Int. Ed. 126, 14596 (2014). doi: 10.1002/ange.201407447
    [136]
    R. J. Saykally and G. A. Blake, Science 259, 1570 (1993). doi: 10.1126/science.259.5101.1570
    [137]
    J. O. Richardson, C. Pérez, S. Lobsiger, A. A. Reid, B. Temelso, G. C. Shields, Z. Kisiel, D. J. Wales, B. H. Pate, and S. C. Althorpe, Science 351, 1310 (2016). doi: 10.1126/science.aae0012
    [138]
    J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 134, 054109 (2011). doi: 10.1063/1.3530589
    [139]
    J. O. Richardson, S. C. Althorpe, and D. J. Wales, J. Chem. Phys. 135, 124109 (2011). doi: 10.1063/1.3640429
    [140]
    G. R. Medders, V. Babin, and F. Paesani, J. Chem. Theory Comput. 9, 1103 (2013). doi: 10.1021/ct300913g
    [141]
    V. Babin, C. Leforestier, and F. Paesani, J. Chem. Theory Comput. 9, 5395 (2013). doi: 10.1021/ct400863t
    [142]
    V. Babin, G. R. Medders, and F. Paesani, J. Chem. Theory Comput. 10, 1599 (2014). doi: 10.1021/ct500079y
    [143]
    B. Zhang, Y. Yu, Z. Zhang, Y. Y. Zhang, S. Jiang, Q. Li, S. Yang, H. S. Hu, W. Zhang, D. Dai, G. Wu, J. Li, D. H. Zhang, X. Yang, and L. Jiang, J. Phys. Chem. Lett. 11, 851 (2020). doi: 10.1021/acs.jpclett.9b03683
    [144]
    H. Partridge and D. W. Schwenke, J. Chem. Phys. 106, 4618 (1997). doi: 10.1063/1.473987
    [145]
    N. Q. Su, Z. Zhu, and X. Xu, Proc. Natl. Acad. Sci. USA 115, 2287 (2018). doi: 10.1073/pnas.1713047115
    [146]
    I. Y. Zhang and X. Xu, J. Phys. Chem. Lett. 10, 2617 (2019). doi: 10.1021/acs.jpclett.9b00946
    [147]
    G. Li, Y. Y. Zhang, Q. Li, C. Wang, Y. Yu, B. Zhang, H. S. Hu, W. Zhang, D. Dai, G. Wu, D. H. Zhang, J. Li, X. Yang, and L. Jiang, Nat. Commun. 11, 5449 (2020). doi: 10.1038/s41467-020-19226-6
    [148]
    R. N. Pribble and T. S. Zwier, Science 265, 75 (1994). doi: 10.1126/science.265.5168.75
    [149]
    X. Chen, Y. F. Zhao, L. S. Wang, and J. Li, Comput. Theor. Chem. 1107, 57 (2017). doi: 10.1016/j.comptc.2016.12.028
    [150]
    A. Lenz and L. Ojamäe, J. Phys. Chem. A 110, 13388 (2006). doi: 10.1021/jp066372x
    [151]
    D. R. Moberg, D. Becker, C. W. Dierking, F. Zurheide, B. Bandow, U. Buck, A. Hudait, V. Molinero, F. Paesani, and T. Zeuch, Proc. Natl. Acad. Sci. USA 116, 24413 (2019).
    [152]
    Y. Zhao, X. Chen, and J. Li, Nano Res. 10, 3407 (2017). doi: 10.1007/s12274-017-1553-z
    [153]
    B. Temelso, K. L. Klein, J. W. Mabey, C. Perez, B. H. Pate, Z. Kisiel, and G. C. Shields, J. Chem. Theory Comput. 14, 1141 (2018). doi: 10.1021/acs.jctc.7b00938
    [154]
    J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005). doi: 10.1063/1.2121687
    [155]
    J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933). doi: 10.1063/1.1749327
    [156]
    A. Rahman and F. H. Stillinger, J. Chem. Phys. 55, 3336 (1971). doi: 10.1063/1.1676585
    [157]
    K. Laasonen, M. Sprik, M. Parrinello, and R. Car, J. Chem. Phys. 99, 9080 (1993). doi: 10.1063/1.465574
    [158]
    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992). doi: 10.1103/PhysRevB.46.6671
    [159]
    A. D. Becke, Phys. Rev. A 38, 3098 (1988). doi: 10.1103/PhysRevA.38.3098
    [160]
    M. Matsumoto, S. Saito, and I. Ohmine, Nature 416, 409 (2002). doi: 10.1038/416409a
    [161]
    W. L. Jorgensen and J. D. Madura, Mol. Phys. 56, 1381 (1985). doi: 10.1080/00268978500103111
    [162]
    M. Del Ben, M. Sch onherr, J. Hutter, and J. VandeVondele, J. Phys. Chem. Lett. 4, 3753 (2013). doi: 10.1021/jz401931f
    [163]
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987). doi: 10.1021/j100308a038
    [164]
    C. W. Liu, F. Wang, L. Yang, X. Z. Li, W. J. Zheng, and Y. Q. Gao, J. Phys. Chem. B 118, 743 (2014). doi: 10.1021/jp408439j
    [165]
    Q. Zhang, T. Wu, C. Chen, S. Mukamel, and W. Zhuang, Proc. Natl. Acad. Sci. USA 114, 10023 (2017). doi: 10.1073/pnas.1707453114
    [166]
    Q. Zhang, H. Chen, T. Wu, T. Jin, Z. Pan, J. Zheng, Y. Gao, and W. Zhuang, Chem. Sci. 8, 1429 (2017). doi: 10.1039/C6SC03320B
    [167]
    J. Behler, Int. J. Quantum Chem. 115, 1032 (2015). doi: 10.1002/qua.24890
    [168]
    S. Manzhos, R. Dawes, and T. Carrington, Int. J. Quantum Chem. 115, 1012 (2015). doi: 10.1002/qua.24795
    [169]
    S. Ma and Z. P. Liu, ACS Catal. 10, 13213 (2020). doi: 10.1021/acscatal.0c03472
    [170]
    M. Pinheiro, F. Ge, N. Ferré, P. O. Dral, and M. Barbatti, Chem. Sci. 12, 14396 (2021). doi: 10.1039/D1SC03564A
    [171]
    J. Behler, J. Chem. Phys. 145, 170901 (2016). doi: 10.1063/1.4966192
    [172]
    Y. Zhang, C. Hu, and B. Jiang, J. Phys. Chem. Lett. 10, 4962 (2019). doi: 10.1021/acs.jpclett.9b02037
    [173]
    T. Morawietz and J. Behler, J. Phys. Chem. A 117, 7356 (2013). doi: 10.1021/jp401225b
    [174]
    A. P. Bartók, R. Kondor, and G. Csányi, Phys. Rev. B 87, 184115 (2013). doi: 10.1103/PhysRevB.87.184115
    [175]
    C. W. Rosenbrock, K. Gubaev, A. V. Shapeev, L. B. Pártay, N. Bernstein, G. Csányi, and G. L. W. Hart, npj Comput. Mater. 7, 24 (2021). doi: 10.1038/s41524-020-00477-2
    [176]
    D. Hankins, J. W. Moskowitz, and F. H. Stillinger, J. Chem. Phys. 53, 4544 (1970). doi: 10.1063/1.1673986
    [177]
    R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. van der Avoird, Science 315, 1249 (2007). doi: 10.1126/science.1136371
    [178]
    Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 134, 094509 (2011). doi: 10.1063/1.3554905
    [179]
    G. R. Medders, V. Babin, and F. Paesani, J. Chem. Theory Comput. 10, 2906 (2014). doi: 10.1021/ct5004115
    [180]
    M. Riera, E. P. Yeh, and F. Paesani, J. Chem. Theory Comput. 16, 2246 (2020). doi: 10.1021/acs.jctc.9b01175
    [181]
    M. Riera, A. Hirales, R. Ghosh, and F. Paesani, J. Phys. Chem. B 124, 11207 (2020). doi: 10.1021/acs.jpcb.0c08728
    [182]
    K. M. Hunter, J. C. Wagner, M. Kalaj, S. M. Cohen, W. Xiong, and F. Paesani, J. Phys. Chem. C 125, 12451 (2021). doi: 10.1021/acs.jpcc.1c03145
    [183]
    A. Nandi, C. Qu, P. L. Houston, R. Conte, Q. Yu, and J. M. Bowman, J. Phys. Chem. Lett. 12, 10318 (2021). doi: 10.1021/acs.jpclett.1c03152
    [184]
    J. P. Heindel, Q. Yu, J. M. Bowman, and S. S. Xantheas, J. Chem. Theory Comput. 14, 4553 (2018). doi: 10.1021/acs.jctc.8b00598
    [185]
    D. J. Arismendi-Arrieta, M. Riera, P. Bajaj, R. Prosmiti, and F. Paesani, J. Phys. Chem. B 120, 1822 (2016). doi: 10.1021/acs.jpcb.5b09562
    [186]
    P. Bajaj, A. W. Götz, and F. Paesani, J. Chem. Theory Comput. 12, 2698 (2016). doi: 10.1021/acs.jctc.6b00302
    [187]
    M. Riera, N. Mardirossian, P. Bajaj, A. W. Götz, and F. Paesani, J. Chem. Phys. 147, 161715 (2017). doi: 10.1063/1.4993213
    [188]
    S. Grimme, J. Chem. Phys. 124, 034108 (2006). doi: 10.1063/1.2148954
    [189]
    Z. N. Chen, T. Shen, Y. Wang, and I. Y. Zhang, CCS Chem. 3, 136 (2021). doi: 10.31635/ccschem.020.202000635
    [190]
    S. Duan, I. Y. Zhang, Z. Xie, and X. Xu, J. Am. Chem. Soc. 142, 6902 (2020). doi: 10.1021/jacs.0c01549
    [191]
    K. Yagi, S. Hirata, and K. Hirao, Phys. Chem. Chem. Phys. 10, 1781 (2008). doi: 10.1039/b719093j
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (545) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return