Volume 35 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Jiaying Chen, Tongmei Ma, Shuming Bai, Qiang Shi. Electronic Couplings for Singlet Oxygen Photosensitization and Its Molecular Orbital Overlap Description[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 219-226. doi: 10.1063/1674-0068/cjcp2112290
Citation: Jiaying Chen, Tongmei Ma, Shuming Bai, Qiang Shi. Electronic Couplings for Singlet Oxygen Photosensitization and Its Molecular Orbital Overlap Description[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 219-226. doi: 10.1063/1674-0068/cjcp2112290

Electronic Couplings for Singlet Oxygen Photosensitization and Its Molecular Orbital Overlap Description

doi: 10.1063/1674-0068/cjcp2112290
More Information
  • The reaction of triplet fusion, also named triplet-triplet annihilation, has attracted a lot of research interests because of its wide applications in photocatalytic, solar cells, and bio-imaging. As for the singlet oxygen photosensitization, the reactive singlet oxygen species are generated through the energy transfers from photosensitizer (PS) to ground triplet oxygen molecule. In this work, we computed the electronic coupling for singlet oxygen photosensitization using the nonadiabatic coupling from the quantum chemical calculation. Then we utilized the molecular orbital (MO) overlaps to approximate it, where the MOs were computed from isolated single molecules. As demonstrated with quantitative results, this approach well describes the distribution of the coupling strength as the function of the intermolecular distance between the sensitizer and O$ _2 $, providing us a simple but effective way to predict the coupling of triplet fusion reactions.

     

  • Part of Special Issue "In Memory of Prof. Nanquan Lou on the occasion of his 100th anniversary".
  • loading
  • [1]
    P. R. Ogilby, Chem. Soc. Rev. 39, 3181 (2010). doi: 10.1039/b926014p
    [2]
    C. Schweitzer and R. Schmidt, Chem. Rev. 103, 1685 (2003). doi: 10.1021/cr010371d
    [3]
    K. K. Chin, C. C. Trevithick-Sutton, J. McCallum, S. Jockusch, N. J. Turro, J. C. Scaiano, C. S. Foote, and M. A. Garcia-Garibay, J. Am. Chem. Soc. 130, 6912 (2008). doi: 10.1021/ja800926v
    [4]
    R. L. Jensen, J. Arnbjerg, H. Birkedal, and P. R. Ogilby, J. Am. Chem. Soc. 133, 7166 (2011). doi: 10.1021/ja2010708
    [5]
    A. U. Khan, J. Phys. Chem. 80, 2219 (1976). doi: 10.1021/j100561a018
    [6]
    Z. J. Zhou, J. B. Song, L. M. Nie, and X. Y. Chen, Chem. Soc. Rev. 45, 6597 (2016). doi: 10.1039/C6CS00271D
    [7]
    L. Colombeau, S. Acherar, F. Baros, P. Arnoux, A. M. Gazzali, K. Zaghdoudi, M. Toussaint, R. Vanderesse, and C. Frochot, In Light-Responsive Nanostructured Systems for Applications in Nanomedicine, 113 (2016).
    [8]
    I. O. L. Bacellar, T. M. Tsubone, C. Pavani, and M. S. Baptista, Int. J. Mol. Sci. 16, 20523 (2015). doi: 10.3390/ijms160920523
    [9]
    M. J. Paterson, O. Christiansen, F. Jensen, and P. R. Ogilby, Photochem. Photobiol. 82, 1136 (2006). doi: 10.1562/2006-03-17-IR-851
    [10]
    S. Bai and M. Barbatti, J. Phys. Chem. Lett. 8, 5456 (2017). doi: 10.1021/acs.jpclett.7b02574
    [11]
    S. Bai and M. Barbatti, J. Chem. Theory Comput. 13, 5528 (2017). doi: 10.1021/acs.jctc.7b00619
    [12]
    I. E. Kochevar and R. W. Redmond, Methods Enzymol. 319, 20 (2000).
    [13]
    O. L. Gijzeman, F. Kaufman, and G. Porter, J. Chem. Soc. Faraday Trans. 69, 708 (1973). doi: 10.1039/f29736900708
    [14]
    E. Gross, D. Kovalev, N. Kunzner, J. Diener, F. Koch, V. Y. Timoshenko, and M. Fujii, Phys. Rev. B 68, 115405 (2003). doi: 10.1103/PhysRevB.68.115405
    [15]
    B. D. Ravetz, A. B. Pun, E. M. Churchill, D. N. Congreve, T. Rovis, and L. M. Campos, Nature 565, 343 (2019). doi: 10.1038/s41586-018-0835-2
    [16]
    T. Dilbeck and K. Hanson, J. Phys. Chem. Lett. 9, 5810 (2018). doi: 10.1021/acs.jpclett.8b02635
    [17]
    K. Y. Zhang, T. W. Zhang, H. J. Wei, Q. Wu, S. J. Liu, Q. Zhao, and W. Huang, Chem. Sci. 9, 7236 (2018). doi: 10.1039/C8SC02984A
    [18]
    F. Saenz, A. Ronchi, M. Mauri, D. Kiebala, A. Monguzzi, and C. Weder, ACS Appl. Mater. Inter. 13, 43314 (2021). doi: 10.1021/acsami.1c09813
    [19]
    C. J. Imperiale, P. B. Green, E. G. Miller, N. H. Damrauer, and M. W. B. Wilson, J. Phys. Chem. Lett. 10, 7463 (2019). doi: 10.1021/acs.jpclett.9b03115
    [20]
    J. Y. Zhang, H. P. Liu, S. H. Yin, S. L. Cong, N. Q. Lou, and X. Y. Wang, Chin. J. Chem. Phys. 18, 859 (2005).
    [21]
    S. H. Yin, H. P. Liu, J. Y. Zhang, B. Jiang, L. Wang, G. H. Sha, and N. Q. Lou, Chin. J. Chem. Phys. 16, 171 (2003).
    [22]
    Y. Shi, J. Y. Liu, K. Han, and N. Q. Lou, Chin. J. Chem. Phys. 17, 1 (2004).
    [23]
    Z. G. Sun and N. Q. Lou, Phys. Rev. Lett. 91, 023002 (2003). doi: 10.1103/PhysRevLett.91.023002
    [24]
    D. Casanova, Chem. Rev. 118, 7164 (2018). doi: 10.1021/acs.chemrev.7b00601
    [25]
    J. G. Parker and W. D. Stanbro, Prog. Clin. Biol. Res. 170, 259 (1984).
    [26]
    J. Baier, T. Fuss, C. Pollmann, C. Wiesmann, K. Pindl, R. Engl, D. Baumer, M. Maier, M. Landthaler, and W. Baumler, J. Photochem. Photobiol. B 87, 163 (2007). doi: 10.1016/j.jphotobiol.2007.02.006
    [27]
    J. J. Serrano-Perez, G. Olaso-Gonzalez, M. Merchan, and L. Serrano-Andres, Chem. Phys. 360, 85 (2009). doi: 10.1016/j.chemphys.2009.04.014
    [28]
    Y. Hayashi, A. Morimoto, T. Maeda, T. Enoki, Y. Ooyama, Y. Matsui, H. Ikeda, and S. Yagi, New J. Chem. 45, 2264 (2021). doi: 10.1039/D0NJ05526C
    [29]
    A. I. Burshtein and O. A. Igoshin, J. Chem. Phys. 111, 2200 (1999). doi: 10.1063/1.479492
    [30]
    R. Schmidt, J. Phys. Chem. A 110, 10369 (2006).
    [31]
    A. Troisi and G. Orlandi, J. Phys. Chem. B 106, 2093 (2002). doi: 10.1021/jp0133182
    [32]
    D. L. Cheung and A. Troisi, J. Phys. Chem. C 114, 20479 (2010). doi: 10.1021/jp1049167
    [33]
    F. Gajdos, S. Valner, F. Hoffmann, J. Spencer, M. Breuer, A. Kubas, M. Dupuis, and J. Blumberger, J. Chem. Theory Comput. 10, 4653 (2014). doi: 10.1021/ct500527v
    [34]
    S. M. Bai, P. Zhang, and D. N. Beratan, J. Phys. Chem. C 124, 18956 (2020). doi: 10.1021/acs.jpcc.0c06694
    [35]
    H. Kuramochi, T. Kobayashi, T. Suzuki, and T. Ichimura, J. Phys. Chem. B 114, 8782 (2010). doi: 10.1021/jp102067t
    [36]
    H. C. Longuethiggins and M. D. Roberts, Proc. R. Soc. London, Ser. A 224, 336 (1954).
    [37]
    O. Ayed, E. Bernard, and B. Silvi, J Mol. Struc. Theochem 28, 159 (1986).
    [38]
    R. S. Mulliken, J. Chim. Phys. 46, 497 (1949). doi: 10.1051/jcp/1949460497
    [39]
    S. S. Skourtis, C. R. Liu, P. Antoniou, A. M. Virshup, and D. N. Beratan, Proc. Natl. Acad. Sci. USA 113, 8115 (2016). doi: 10.1073/pnas.1517189113
    [40]
    H. Tamura, J. Phys. Chem. A 120, 9341 (2016). doi: 10.1021/acs.jpca.6b09854
    [41]
    Z. Lan and J. Shao, Prog. Chem. 24, 1105 (2012).
    [42]
    R. G. Sadygov and D. R. Yarkony, J. Chem. Phys. 109, 20 (1998). doi: 10.1063/1.476552
    [43]
    H. Lischka, T. Muller, P. G. Szalay, I. Shavitt, R. M. Pitzer, and R. Shepard, Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 191 (2011). doi: 10.1002/wcms.25
    [44]
    I. Fdez Galvan, M. Vacher, A. Alavi, C. Angeli, F. Aquilante, J. Autschbach, J. J. Bao, S. I. Bokarev, N. A. Bogdanov, R. K. Carlson, L. F. Chibotaru, J. Creutzberg, N. Dattani, M. G. Delcey, S. S. Dong, A. Dreuw, L. Freitag, L. M. Frutos, L. Gagliardi, F. Gendron, A. Giussani, L. Gonzalez, G. Grell, M. Guo, C. E. Hoyer, M. Johansson, S. Keller, S. Knecht, G. Kovacevic, E. Kallman, G. Li Manni, M. Lundberg, Y. Ma, S. Mai, J. P. Malhado, P. A. Malmqvist, P. Marquetand, S. A. Mewes, J. Norell, M. Olivucci, M. Oppel, Q. M. Phung, K. Pierloot, F. Plasser, M. Reiher, A. M. Sand, I. Schapiro, P. Sharma, C. J. Stein, L. K. Sorensen, D. G. Truhlar, M. Ugandi, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, O. Weser, T. A. Wesolowski, P. O. Widmark, S. Wouters, A. Zech, J. P. Zobel, and R. Lindh, J. Chem. Theory Comput. 15, 5925 (2019). doi: 10.1021/acs.jctc.9b00532
    [45]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A. 1, Wallingford CT: Gaussian Inc., (2009).
  • CJCP2112290SP.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (393) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return