Volume 35 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Man Lian, Yu-Chen Wang, Shiping Peng, Yi Zhao. Photo-Induced Ultrafast Electron Dynamics in Anatase and Rutile TiO2: Effects of Electron-Phonon Interaction[J]. Chinese Journal of Chemical Physics , 2022, 35(2): 270-280. doi: 10.1063/1674-0068/cjcp2111264
Citation: Man Lian, Yu-Chen Wang, Shiping Peng, Yi Zhao. Photo-Induced Ultrafast Electron Dynamics in Anatase and Rutile TiO2: Effects of Electron-Phonon Interaction[J]. Chinese Journal of Chemical Physics , 2022, 35(2): 270-280. doi: 10.1063/1674-0068/cjcp2111264

Photo-Induced Ultrafast Electron Dynamics in Anatase and Rutile TiO2: Effects of Electron-Phonon Interaction

doi: 10.1063/1674-0068/cjcp2111264
More Information
  • Corresponding author: Yi Zhao, E-mail: yizhao@xmu.edu.cn
  • Received Date: 2021-11-30
  • Accepted Date: 2021-12-25
  • Publish Date: 2022-04-27
  • The photo-induced ultrafast electron dynamics in both anatase and rutile TiO$_{2}$ are investigated by using the Boltzmann transport equation with the explicit incorporation of electron-phonon scattering rates. All structural parameters required for dynamic simulations are obtained from ab initio calculations. The results show that although the longitudinal optical modes significantly affect the electron energy relaxation dynamics in both phases due to strong Fröhlich-type couplings, the detailed relaxation mechanisms have obvious differences. In the case of a single band, the energy relaxation time in anatase is 24.0 fs, twice longer than 11.8 fs in rutile. This discrepancy is explained by the different diffusion distributions over the electronic Bloch states and different scattering contributions from acoustic modes in the two phases. As for the multiple-band situation involving the lowest six conduction bands, the predicted overall relaxation times are about 47 fs and 57 fs in anatase and rutile, respectively, very different from the case of the single band. The slower relaxation in rutile is attributed to the existence of multiple rate-controlled steps during the dynamic process. The present findings may be helpful to control the electron dynamics for designing efficient TiO$_{2}$-based devices.

     

  • Part of Special Issue "In Memory of Prof. Nanquan Lou on the occasion of his 100th anniversary".
  • loading
  • [1]
    G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006). doi: 10.1016/j.solmat.2006.04.007
    [2]
    P. Lianos, Appl. Catal. B 210, 235 (2017). doi: 10.1016/j.apcatb.2017.03.067
    [3]
    M. A. Henderson, Surf. Sci. Rep. 66, 185 (2011). doi: 10.1016/j.surfrep.2011.01.001
    [4]
    Q. Guo, C. Zhou, Z. Ma, and X. Yang, Adv. Mater. 31, 1901997 (2019). doi: 10.1002/adma.201901997
    [5]
    Y. Tamaki, K. Hara, R. Katoh, M. Tachiya, and A. Furube, J. Phys. Chem. C 113, 11741 (2009). doi: 10.1021/jp901833j
    [6]
    J. Jaćimović, C. Vaju, A. Magrez, H. Berger, L. Forró, R. Gaál, V. Cerovski and R. Žikic, Europhys. Lett. 99, 57005 (2012). doi: 10.1209/0295-5075/99/57005
    [7]
    S. Moser, L. Moreschini, J. Jaćimović, O. S. Barišić, H. Berger, A. Magrez, Y. J. Chang, K. S. Kim, A. Bostwick, E. Rotenberg, L. Forró, and M. Grioni, Phys. Rev. Lett. 110, 196403 (2013). doi: 10.1103/PhysRevLett.110.196403
    [8]
    E. Baldini, T. Palmieri, E. Pomarico, G. Auböck, and M. Chergui, ACS Photon. 5, 1241 (2018). doi: 10.1021/acsphotonics.7b00945
    [9]
    Z. Guo, O. V. Prezhdo, T. Hou, X. Chen, S. T. Lee, and Y. Li, J. Phys. Chem. Lett. 5, 1642 (2014). doi: 10.1021/jz500565v
    [10]
    E. Hendry, F. Wang, J. Shan, T. F. Heinz, and M. Bonn, Phys. Rev. B 69, 081101 (2004). doi: 10.1103/PhysRevB.69.081101
    [11]
    X. Yang and N. Tamai, Phys. Chem. Chem. Phys. 3, 3393 (2001). doi: 10.1039/b101721g
    [12]
    Y. Yamada and Y. Kanemitsu, Appl. Phys. Lett. 101, 133907 (2012). doi: 10.1063/1.4754831
    [13]
    H. Matsuzaki, Y. Matsui, R. Uchida, H. Yada, T. Terashige, B. S. Li, A. Sawa, M. Kawasaki, Y. Tokura, and H. Okamoto, J. Appl. Phys. 115, 053514 (2014). doi: 10.1063/1.4864219
    [14]
    G. M. Turner, M. C. Beard, and C. A. Schmuttenmaer, J. Phys. Chem. B 106, 11716 (2002). doi: 10.1021/jp025844e
    [15]
    W. R. Duncan, C. F. Craig, and O. V. Prezhdo, J. Am. Chem. Soc. 129, 8528 (2007). doi: 10.1021/ja0707198
    [16]
    W. R. Duncan, W. M. Stier, and O. V. Prezhdo, J. Am. Chem. Soc. 127, 7941 (2005). doi: 10.1021/ja042156v
    [17]
    J. Sjakste, K. Tanimura, G. Barbarino, L. Perfetti, and N. Vast, J. Phys. : Condens. Matter 30, 353001 (2018). doi: 10.1088/1361-648X/aad487
    [18]
    M. Bernardi, Eur. Phys. J. B 89, 239 (2016). doi: 10.1140/epjb/e2016-70399-4
    [19]
    V. P. Zhukov and E. V. Chulkov, J. Phys. : Condens. Matter 22, 435802 (2010). doi: 10.1088/0953-8984/22/43/435802
    [20]
    A. Kazempour, Phys. Scr. 90, 025804 (2015). doi: 10.1088/0031-8949/90/2/025804
    [21]
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys. : Condens. Matter 21, 395502 (2009). doi: 10.1088/0953-8984/21/39/395502
    [22]
    P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Kçkbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys. : Condens. Matter 29, 465901 (2017). doi: 10.1088/1361-648X/aa8f79
    [23]
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    [24]
    M. Horn, C. F. Schwerdtfeger, and E. P. Meagher, Zeitschrift für Kristallographie-Crystalline Materials 136, 273 (1972).
    [25]
    S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 55, 3206 (1971). doi: 10.1063/1.1676569
    [26]
    J. J. Zhou, J. Park, I. T. Lu, I. Maliyov, X. Tong, and M. Bernardi, Comput. Phys. Commun. 264, 107970 (2021). doi: 10.1016/j.cpc.2021.107970
    [27]
    G. Pizzi, V. Vitale, R. Arita, Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez Azpiroz, H. Lee, J. M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mosto, and J. R. Yates, J. Phys. : Condens. Matter 32, 165902 (2020). doi: 10.1088/1361-648X/ab51ff
    [28]
    H. Fröhlich, Adv. Phys. 3, 325 (1954). doi: 10.1080/00018735400101213
    [29]
    C. Verdi and F. Giustino, Phys. Rev. Lett. 115, 176401 (2015). doi: 10.1103/PhysRevLett.115.176401
    [30]
    C. Verdi, F. Caruso, and F. Giustino, Nat. Commun. 8, 15769 (2017). doi: 10.1038/ncomms15769
    [31]
    J. J. Zhou and M. Bernardi, Phys. Rev. B 94, 201201 (2016). doi: 10.1103/PhysRevB.94.201201
  • CJCP2111264SP.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (446) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return