Volume 35 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Lei Zhang, Zheng Cheng, Wei Li, Shuhua Li. Generalized Energy-Based Fragmentation Approach for Accurate Binding Energies and Raman Spectra of Methane Hydrate Clusters[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 167-176. doi: 10.1063/1674-0068/cjcp2111256
Citation: Lei Zhang, Zheng Cheng, Wei Li, Shuhua Li. Generalized Energy-Based Fragmentation Approach for Accurate Binding Energies and Raman Spectra of Methane Hydrate Clusters[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 167-176. doi: 10.1063/1674-0068/cjcp2111256

Generalized Energy-Based Fragmentation Approach for Accurate Binding Energies and Raman Spectra of Methane Hydrate Clusters

doi: 10.1063/1674-0068/cjcp2111256
More Information
  • Corresponding author: Wei Li, E-mail: wli@nju.edu.cn; Shuhua Li, E-mail: shuhua@nju.edu.cn
  • Received Date: 2021-11-30
  • Accepted Date: 2022-01-27
  • Publish Date: 2022-02-27
  • Methane hydrates (MHs) play important roles in the fields of chemistry, energy, environmental sciences, etc. In this work, we employ the generalized energy-based fragmentation (GEBF) approach to compute the binding energies and Raman spectra of various MH clusters. For the GEBF binding energies of various MH clusters, we first evaluated the various functionals of density functional theory (DFT), and compared them with the results of explicitly correlated combined coupled-cluster singles and doubles with noniterative triples corrections [CCSD(T)(F12$ ^* $)] method. Our results show that the two best functionals are B3PW91-D3 and B97D, with mean absolute errors of only 0.27 and 0.47 kcal/mol, respectively. Then we employed GEBF-B3PW91-D3 to obtain the structures and Raman spectra of MH clusters with mono- and double-cages. Our results show that the B3PW91-D3 functional can well reproduce the experimental C−H stretching Raman spectra of methane in MH crystals, with errors less than 3 cm$ ^{-1} $. As the size of the water cages increased, the C−H stretching Raman spectra exhibited a redshift, which is also in agreement with the experimental "loose cage$ - $tight cage" model. In addition, the Raman spectra are only slightly affected by the neighboring environment (cages) of methane. The blueshifts of C−H stretching frequencies are no larger than 3 cm$ ^{-1} $ for CH4 from monocages to doublecages. The Raman spectra of the MH clusters could be combined with the experimental Raman spectra to investigate the structures of methane hydrates in the ocean bottom or in the interior of interstellar icy bodies. Based on the B3PW91-D3 or B97D functional and machine learning models, molecular dynamics simulations could be applied to the nucleation and growth mechanisms, and the phase transitions of methane hydrates.


  • Part of Special Issue "In Memory of Prof. Nanquan Lou on the occasion of his 100th anniversary".
  • loading
  • [1]
    D. Sloan, Nature 426, 353 (2003). doi: 10.1038/nature02135
    Y. F. Makogon, S. A. Holditch, and T. Y. Makogon, J. Petrol. Sci. Eng. 56, 14 (2007). doi: 10.1016/j.petrol.2005.10.009
    H. P. Veluswamy, A. Kumar, Y. Seo, J. D. Lee, and P. Linga, Appl. Energ. 216, 262 (2018). doi: 10.1016/j.apenergy.2018.02.059
    A. K. Both, Y. Gao, X. C. Zeng, and C. L. Cheung, Nanoscale 13, 7447 (2021). doi: 10.1039/D1NR00751C
    A. Hassanpouryouzband, E. Joonaki, M. Vasheghani Farahani, S. Takeya, C. Ruppel, J. Yang, N. J. English, J. M. Schicks, K. Edlmann, H. Mehrabian, Z. M. Aman, and B. Tohidi, Chem. Soc. Rev. 49, 5225 (2020).
    A. Lenz and L. Ojamäe, J. Phys. Chem. A 115, 6169 (2011). doi: 10.1021/jp111328v
    S. Shahnazar and N. Hasan, Fluid Phase Equilib. 379, 72 (2014). doi: 10.1016/j.fluid.2014.07.012
    S. Subramanian and E. D. Sloan, J. Phys. Chem. B 106, 4348 (2002). doi: 10.1021/jp013644h
    A. K. Sum, R. C. Burruss, and E. D. Sloan, J. Phys. Chem. B 101, 7371 (1997).
    J. M. Schicks and M. Luzi-Helbing, J. Chem. Eng. Data 60, 269 (2015). doi: 10.1021/je5005593
    M. Choukroun, Y. Morizet, and O. Grasset, J. Raman Spectrosc. 38, 440 (2007). doi: 10.1002/jrs.1665
    H. Kadobayashi, H. Hirai, H. Ohfuji, M. Ohtake, M. Muraoka, S. Yoshida, and Y. Yamamoto, J. Chem. Phys. 152, 194308 (2020). doi: 10.1063/5.0007511
    S. J. Cho, T. L. Son Hai, and J. D. Lee, Energy Procedia 158, 5615 (2019). doi: 10.1016/j.egypro.2019.01.578
    W. Chen and R. L. Hartman, Ener. Fuels 32, 11761 (2018). doi: 10.1021/acs.energyfuels.8b02833
    H. Kadobayashi, H. Hirai, K. Suzuki, H. Ohfuji, M. Muraoka, S. Yoshida, and Y. Yamamoto, J. Raman Spectrosc. 51, 2536 (2020). doi: 10.1002/jrs.6012
    X. Cao, Y. Su, Y. Liu, J. Zhao, and C. Liu, J. Phys. Chem. A 118, 215 (2014).
    X. Cao, Y. Su, and J. Zhao, J. Phys. Chem. A 119, 7063 (2015). doi: 10.1021/acs.jpca.5b04470
    Y. Liu and L. Ojamae, J. Phys. Chem. C 119, 17084 (2015). doi: 10.1021/acs.jpcc.5b01903
    L. Tang, R. Shi, Y. Su, and J. Zhao, J. Phys. Chem. A 119, 10971 (2015). doi: 10.1021/acs.jpca.5b08073
    A. Khan, J. Phys. Chem. A 105, 7429 (2001). doi: 10.1021/jp010264n
    P. Kumar and N. Sathyamurthy, J. Phys. Chem. A 115, 14276 (2011). doi: 10.1021/jp2089565
    G. Román-Pérez, M. Moaied, J. M. Soler, and F. Yndurain, Phys. Rev. Lett. 105, 145901 (2010). doi: 10.1103/PhysRevLett.105.145901
    Y. Liu, J. Zhao, F. Li, and Z. Chen, J. Comput. Chem. 34, 121 (2013). doi: 10.1002/jcc.23112
    M. S. Gordon, D. G. Fedorov, S. R. Pruitt, and L. V. Slipchenko, Chem. Rev. 112, 632 (2012). doi: 10.1021/cr200093j
    S. Li, W. Li, and J. Ma, Acc. Chem. Res. 47, 2712 (2014). doi: 10.1021/ar500038z
    M. A. Collins and R. P. A. Bettens, Chem. Rev. 115, 5607 (2015). doi: 10.1021/cr500455b
    K. Raghavachari and A. Saha, Chem. Rev. 115, 5643 (2015). doi: 10.1021/cr500606e
    T. Fang, Y. Li, and S. Li, WIREs Comput. Mol. Sci. 7, e1297 (2017).
    J. M. Herbert, J. Chem. Phys. 151, 170901 (2019). doi: 10.1063/1.5126216
    Q. Lu, X. He, W. Hu, X. Chen, and J. Liu, J. Phys. Chem. C 123, 12052 (2019). doi: 10.1021/acs.jpcc.8b11586
    W. Li, H. Dong, J. Ma, and S. Li, Acc. Chem. Res. 54, 169 (2021). doi: 10.1021/acs.accounts.0c00580
    W. Li, S. Li, and Y. Jiang, J. Phys. Chem. A 111, 2193 (2007). doi: 10.1021/jp067721q
    W. Hua, T. Fang, W. Li, J. G. Yu, and S. Li, J. Phys. Chem. A 112, 10864 (2008). doi: 10.1021/jp8026385
    W. Li, Y. Li, R. Lin, and S. Li, J. Phys. Chem. A 120, 9667 (2016). doi: 10.1021/acs.jpca.6b11193
    D. Zhao, R. Song, W. Li, J. Ma, H. Dong, and S. Li, J. Chem. Theory Comput. 13, 5231 (2017). doi: 10.1021/acs.jctc.7b00380
    Z. Cheng, D. Zhao, J. Ma, W. Li, and S. Li, J. Phys. Chem. A 124, 5007 (2020). doi: 10.1021/acs.jpca.0c04526
    K. Liao, S. Wang, W. Li, and S. Li, Phys. Chem. Chem. Phys. 23, 19394 (2021). doi: 10.1039/D1CP02814F
    Z. Cheng, J. Du, L. Zhang, J. Ma, W. Li, and S. Li, Phys. Chem. Chem. Phys. 24, 1326 (2022). doi: 10.1039/D1CP03934B
    W. Li, H. Ma, S. Li, and J. Ma, Chem. Sci. 12, 14987 (2021). doi: 10.1039/D1SC02574K
    T. Fang, W. Li, F. Gu, and S. Li, J. Chem. Theory Comput. 11, 91 (2015). doi: 10.1021/ct500833k
    T. Fang, J. Jia, and S. Li, J. Phys. Chem. A 120, 2700 (2016). doi: 10.1021/acs.jpca.5b10927
    L. Zhang, W. Li, T. Fang, and S. Li, J. Phys. Chem. A 121, 4030 (2017). doi: 10.1021/acs.jpca.7b03376
    D. Zhao, X. Shen, Z. Cheng, W. Li, H. Dong, and S. Li, J. Chem. Theory Comput. 16, 2995 (2020). doi: 10.1021/acs.jctc.9b01298
    W. Li, J. Chem. Phys. 138, 014106 (2013). doi: 10.1063/1.4773011
    K. Wang, W. Li, and S. Li, J. Chem. Theory Comput. 10, 1546 (2014). doi: 10.1021/ct401060m
    P. Terleczky and L. Nyulaszi, Chem. Phys. Lett. 488, 168 (2010). doi: 10.1016/j.cplett.2010.02.015
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). doi: 10.1063/1.3382344
    A. Austin, G. A. Petersson, M. J. Frisch, F. J. Dobek, G. Scalmani, and K. Throssell, J. Chem. Theory Comput. 8, 4989 (2012). doi: 10.1021/ct300778e
    Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Phys. 123, 161103 (2005). doi: 10.1063/1.2126975
    Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006). doi: 10.1021/ct0502763
    Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008). doi: 10.1007/s00214-007-0310-x
    R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 2, 2810 (2011). doi: 10.1021/jz201170d
    J. D. Chai and M. Head-gordon, J. Chem. Phys. 131, 174105 (2009).
    J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008). doi: 10.1039/b810189b
    S. Grimme, J. Comput. Chem. 27, 1787 (2006). doi: 10.1002/jcc.20495
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    A. D. Becke, Phys. Rev. A 38, 3098 (1988). doi: 10.1103/PhysRevA.38.3098
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). doi: 10.1103/PhysRevB.37.785
    J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003). doi: 10.1103/PhysRevLett.91.146401
    Q. Wu and W. Yang, J. Chem. Phys. 116, 515 (2002). doi: 10.1063/1.1424928
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993). doi: 10.1063/1.464913
    J. P. Perdew, in Electron. Struct. Solids, Physical Research, Vol. 17, P. Ziesche and H. Eschrig Eds., Berlin: Akademie Verlag, 11-20 (1991).
    A. D. Becke, J. Chem. Phys. 98, 1372 (1993). doi: 10.1063/1.464304
    O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006). doi: 10.1063/1.2409292
    A. D. Boese and J. M. L. Martin, J. Chem. Phys. 121, 3405 (2004). doi: 10.1063/1.1774975
    H. J. Werner, T. B. Adler, and F. R. Manby, J. Chem. Phys. 126, 164102 (2007). doi: 10.1063/1.2712434
    C. Hättig, D. P. Tew, and A. Köhn, J. Chem. Phys. 132, 231102 (2010). doi: 10.1063/1.3442368
    S. Simon, M. Duran, and J. J. Dannenberg, J. Chem. Phys. 105, 11024 (1996). doi: 10.1063/1.472902
    K. A. Peterson, T. B. Adler, and H. J. Werner, J. Chem. Phys. 128, 84102 (2008). doi: 10.1063/1.2831537
    K. K. Irikura, R. D. Johnson, and R. N. Kacker, J. Phys. Chem. A 109, 8430 (2005). doi: 10.1021/jp052793n
    A. G. Ogienko, A. V. Kurnosov, A. Y. Manakov, E. G. Larionov, A. I. Ancharov, M. A. Sheromov, and A. N. Nesterov, J. Phys. Chem. B 110, 2840 (2006). doi: 10.1021/jp053915e
    I. M. Chou, A. Sharma, R. C. Burruss, J. Shu, H. K. Mao, R. J. Hemley, A. F. Goncharov, L. A. Stern, and S. H. Kirby, Proc. Natl. Acad. Sci. USA 97, 13484 (2000). doi: 10.1073/pnas.250466497
    H. Hirai, Y. Uchihara, H. Fujihisa, M. Sakashita, E. Katoh, K. Aoki, K. Nagashima, Y. Yamamoto, and T. Yagi, J. Chem. Phys. 115, 7066 (2001). doi: 10.1063/1.1403690
    C. Gutt, B. Asmussen, W. Press, M. R. Johnson, Y. P. Handa, and J. S. Tse, J. Chem. Phys. 113, 4713 (2000). doi: 10.1063/1.1288789
    S. Li, W. Li, Y. Jiang, J. Ma, T. Fang, W. Hua, S. Hua, H. Dong, D. Zhao, K. Liao, W. Zou, Z. Ni, Y. Wang, X. Shen, and B. Hong, LSQC Program, Version 2.4, Nanjing: Nanjing University, (2019).
    W. Li, C. Chen, D. Zhao, and S. Li, Int. J. Quantum Chem. 115, 641 (2015). doi: 10.1002/qua.24831
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Revision B. 01, Wallingford CT: Gaussian Inc., (2016).
    H. J. Werner, P. J. Knowles, F. R. Manby, J. A. Black, K. Doll, A. Heßelmann, D. Kats, A. Köhn, T. Korona, D. A. Kreplin, Q. Ma, T. F. Miller, A. Mitrushchenkov, K. A. Peterson, I. Polyak, G. Rauhut, and M. Sibaev, J. Chem. Phys. 152, 144107 (2020). doi: 10.1063/5.0005081
    S. Li, W. Li, J. Ma, H. Dong, Y. Li, D. Yuan, B. Hong, and J. Du, GEBF Database, Nanjing: Nanjing University, (2020).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (425) PDF downloads(39) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint