Volume 35 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Liang Zhang, Lingjun Zhu, Bin Jiang. Six-Dimensional State-to-State Quantum Dynamics of H2/D2 Scattering from Cu(100): Validity of Site-Averaging Model[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 143-152. doi: 10.1063/1674-0068/cjcp2111248
Citation: Liang Zhang, Lingjun Zhu, Bin Jiang. Six-Dimensional State-to-State Quantum Dynamics of H2/D2 Scattering from Cu(100): Validity of Site-Averaging Model[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 143-152. doi: 10.1063/1674-0068/cjcp2111248

Six-Dimensional State-to-State Quantum Dynamics of H2/D2 Scattering from Cu(100): Validity of Site-Averaging Model

doi: 10.1063/1674-0068/cjcp2111248
More Information
  • Six-dimensional quantum dynamics calculations for the state-to-state scattering of H$ _2 $/D$ _2 $ on the rigid Cu(100) surface have been carried out using a time-dependent wave packet approach, based on an accurate neural network potential energy surface fit for thousands of density functional theory data computed with the optPBE-vdW density functional. The present results are compared with previous theoretical and experimental ones regarding to the rovibrationally (in)elastic scattering of H$ _2 $ and D$ _2 $ from Cu(100). In particular, we test the validity of the site-averaging approximation in this system by which the six-dimensional (in)elastic scattering probabilities are compared with the weighted average of four-dimensional results over fifteen fixed sites. Specifically, the site-averaging model reproduces vibrationally elastic scattering probabilities quite well, though less well for vibrationally inelastic results at high energies. These results support the use of the site-averaging model to reduce computational costs in future investigations on the state-to-state scattering dynamics of heavy diatomic or polyatomic molecules from metal surfaces, where full-dimensional calculations are too expensive.

     

  • Part of Special Issue "In Memory of Prof. Nanquan Lou on the occasion of his 100th anniversary".
  • loading
  • [1]
    G. B. Park, B. C. Krüger, D. Borodin, T. N. Kitsopoulos, and A. M. Wodtke, Rep. Prog. Phys. 82, 096401 (2019). doi: 10.1088/1361-6633/ab320e
    [2]
    B. Jiang, R. Liu, J. Li, D. Xie, M. Yang, and H. Guo, Chem. Sci. 4, 3249 (2013). doi: 10.1039/c3sc51040a
    [3]
    B. Jiang, M. Yang, D. Xie, and H. Guo, Chem. Soc. Rev. 45, 3621 (2016). doi: 10.1039/C5CS00360A
    [4]
    S. Nave, A. K. Tiwari, and B. Jackson, J. Phys. Chem. A 118, 9615 (2014). doi: 10.1021/jp5063644
    [5]
    J. Werdecker, M. E. van Reijzen, B. J. Chen, and R. D. Beck, Phys. Rev. Lett. 120, 053402 (2018). doi: 10.1103/PhysRevLett.120.053402
    [6]
    L. Zhang and B. Jiang, Phys. Rev. Lett. 123, 106001 (2019). doi: 10.1103/PhysRevLett.123.106001
    [7]
    L. Zhang and B. Jiang, J. Chem. Phys. 153, 214702 (2020). doi: 10.1063/5.0030490
    [8]
    J. Werdecker, B. J. Chen, M. E. Van Reijzen, A. Farjamnia, B. Jackson, and R. D. Beck, Phys. Rev. Res. 2, 043251 (2020). doi: 10.1103/PhysRevResearch.2.043251
    [9]
    G. J. Kroes, Phys. Chem. Chem. Phys. 14, 14966 (2012). doi: 10.1039/c2cp42471a
    [10]
    G. J. Kroes, Prog. Surf. Sci. 60, 1 (1999). doi: 10.1016/S0079-6816(99)00006-4
    [11]
    B. Jiang and H. Guo, Phys. Chem. Chem. Phys. 16, 24704 (2014). doi: 10.1039/C4CP03761H
    [12]
    T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 139, 184705 (2013). doi: 10.1063/1.4829508
    [13]
    Z. Zhang, T. Liu, B. Fu, X. Yang, and D. H. Zhang, Nat. Comm. 7, 11953 (2016). doi: 10.1038/ncomms11953
    [14]
    T. Liu, J. Chen, Z. Zhang, X. Shen, B. Fu, and D. H. Zhang, J. Chem. Phys. 148, 144705 (2018). doi: 10.1063/1.5023069
    [15]
    X. Hu, B. Jiang, D. Xie, and H. Guo, J. Chem. Phys. 143, 114706 (2015). doi: 10.1063/1.4931040
    [16]
    T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 146, 164706 (2017). doi: 10.1063/1.4982051
    [17]
    T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 149, 054702 (2018). doi: 10.1063/1.5036805
    [18]
    T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 141, 194302 (2014). doi: 10.1063/1.4901894
    [19]
    J. Dai and J. C. Light, J. Chem. Phys. 107, 1676 (1997). doi: 10.1063/1.474520
    [20]
    H. Shi, T. Liu, Y. Fu, X. Lu, B. Fu, and D. H. Zhang, J. Phys. Chem. C 125, 23105 (2021). doi: 10.1021/acs.jpcc.1c05334
    [21]
    B. Jiang and H. Guo, J. Chem. Phys. 143, 164705 (2015). doi: 10.1063/1.4934357
    [22]
    B. Jiang, H. Song, M. Yang, and H. Guo, J. Chem. Phys. 144, 164706 (2016). doi: 10.1063/1.4947492
    [23]
    E. Watts and G. O. Sitz, J. Chem. Phys. 114, 4171 (2001). doi: 10.1063/1.1344233
    [24]
    L. C. Shackman and G. O. Sitz, J. Chem. Phys. 123, 064712 (2005). doi: 10.1063/1.1993555
    [25]
    L. Sementa, M. Wijzenbroek, B. J. v. Kolck, M. F. Somers, A. Al-Halabi, H. F. Busnengo, R. A. Olsen, G. J. Kroes, M. Rutkowski, C. Thewes, N. F. Kleimeier, and H. Zacharias, J. Chem. Phys. 138, 044708 (2013). doi: 10.1063/1.4776224
    [26]
    C. Díaz, E. Pijper, R. A. Olsen, H. F. Busnengo, D. J. Auerbach, and G. J. Kroes, Science 326, 832 (2009). doi: 10.1126/science.1178722
    [27]
    L. Zhu, Y. Zhang, L. Zhang, X. Zhou, and B. Jiang, Phys. Chem. Chem. Phys. 22, 13958 (2020). doi: 10.1039/D0CP02291H
    [28]
    J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys. : Condens. Matter 22, 022201 (2010). doi: 10.1088/0953-8984/22/2/022201
    [29]
    Y. Zhang, C. Hu, and B. Jiang, J. Phys. Chem. Lett. 10, 4962 (2019). doi: 10.1021/acs.jpclett.9b02037
    [30]
    G. Kresse and J. Furthmuller, Comp. Mater. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0
    [31]
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
    [32]
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953
    [33]
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    [34]
    R. Yin, Y. Zhang, and B. Jiang, J. Phys. Chem. Lett. 10, 5969 (2019). doi: 10.1021/acs.jpclett.9b01806
    [35]
    M. Huang, X. Zhou, Y. Zhang, L. Zhou, M. Alducin, B. Jiang, and H. Guo, Phys. Rev. B 100, 201407(R) (2019).
    [36]
    Y. Zhang, R. J. Maurer, and B. Jiang, J. Phys. Chem. C 124, 186 (2020). doi: 10.1021/acs.jpcc.9b09965
    [37]
    C. Hu, Y. Zhang, and B. Jiang, J. Phys. Chem. C 124, 23190 (2020). doi: 10.1021/acs.jpcc.0c07182
    [38]
    R. Yin and B. Jiang, Phys. Rev. Lett. 126, 156101 (2021). doi: 10.1103/PhysRevLett.126.156101
    [39]
    Q. Lin, L. Zhang, Y. Zhang, and B. Jiang, J. Chem. Theory Comput. 17, 2691 (2021). doi: 10.1021/acs.jctc.1c00166
    [40]
    D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992). doi: 10.1063/1.462100
    [41]
    D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys. 99, 5615 (1993). doi: 10.1063/1.465954
    [42]
    J. Dai and J. C. Light, J. Chem. Phys. 107, 8432 (1997). doi: 10.1063/1.475043
    [43]
    J. A. Flect Jr., J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129 (1976).
    [44]
    S. Y. Lin and H. Guo, J. Chem. Phys. 119, 11602 (2003). doi: 10.1063/1.1624060
    [45]
    S. Y. Lin and H. Guo, J. Chem. Phys. 117, 5183 (2002). doi: 10.1063/1.1500731
    [46]
    J. Dai and J. Z. H. Zhang, J. Phys. Chem. 100, 6898 (1996). doi: 10.1021/jp9536662
    [47]
    F. Nattino, C. Díaz, B. Jackson, and G. J. Kroes, Phys. Rev. Lett. 108, 236104 (2012). doi: 10.1103/PhysRevLett.108.236104
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (471) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return