Volume 35 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Feng An, Shanyu Han, Xixi Hu, Kaijun Yuan, Daiqian Xie. Adiabatic Potential Energy Surfaces and Photodissociation Mechanisms for Highly Excited States of H2O[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 104-116. doi: 10.1063/1674-0068/cjcp2111241
Citation: Feng An, Shanyu Han, Xixi Hu, Kaijun Yuan, Daiqian Xie. Adiabatic Potential Energy Surfaces and Photodissociation Mechanisms for Highly Excited States of H2O[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 104-116. doi: 10.1063/1674-0068/cjcp2111241

Adiabatic Potential Energy Surfaces and Photodissociation Mechanisms for Highly Excited States of H2O

doi: 10.1063/1674-0068/cjcp2111241
More Information
  • Corresponding author: Daiqian Xie, E-mail: dqxie@nju.edu.cn
  • Received Date: 2021-11-20
  • Accepted Date: 2021-12-20
  • Publish Date: 2022-02-27
  • Full-dimensional adiabatic potential energy surfaces of the electronic ground state $ \tilde X $ and nine excited states $ \tilde A $, $ \tilde I $, $ \tilde B $, $ \tilde C $, $ \tilde D $, $ \tilde D' $, $ \tilde D'' $, $ \tilde E' $ and $ \tilde F $ of H$ _2 $O molecule are developed at the level of internally contracted multireference configuration interaction with the Davidson correction. The potential energy surfaces are fitted by using Gaussian process regression combining permutation invariant polynomials. With a large selected active space and extra diffuse basis set to describe these Rydberg states, the calculated vertical excited energies and equilibrium geometries are in good agreement with the previous theoretical and experimental values. Compared with the well-investigated photodissociation of the first three low-lying states, both theoretical and experimental studies on higher states are still limited. In this work, we focus on all the three channels of the highly excited state, which are directly involved in the vacuum ultraviolet photodissociation of water. In particular, some conical intersections of $ \tilde D $-$ \tilde E' $, $ \tilde E' $-$ \tilde F $, $ \tilde A $-$ \tilde I $ and $ \tilde I $-$ \tilde C $ states are clearly illustrated for the first time based on the newly developed potential energy surfaces (PESs). The nonadiabatic dissociation pathways for these excited states are discussed in detail, which may shed light on the photodissociation mechanisms for these highly excited states.

     

  • Part of Special Issue "In Memory of Prof. Nanquan Lou on the occasion of his 100th anniversary".
  • loading
  • [1]
    X. Hu, L. Zhou, and D. Xie, WIREs Comput. Mol. Sci. 8, e1350 (2018).
    [2]
    P. Andresen, G. S. Ondrey, B. Titze, and E. W. Rothe, J. Chem. Phys. 80, 2548 (1984). doi: 10.1063/1.447049
    [3]
    P. Andresen, V. Beushausen, D. Hausler, H. W. Lulf, and E. W. Rothe, J. Chem. Phys. 83, 1429 (1985). doi: 10.1063/1.449412
    [4]
    R. Schinke, V. Engle, P. Andresen, D. Hausler, and G. G. Balintkurti, Phys. Rev. Lett. 55, 1180 (1985). doi: 10.1103/PhysRevLett.55.1180
    [5]
    A. U. Grunewald, K. H. Gericke, and F. J. Comes, Chem. Phys. Lett. 133, 501 (1987). doi: 10.1016/0009-2614(87)80067-2
    [6]
    D. Hausler, P. Andresen, and R. Schinke, J. Chem. Phys. 87, 3949 (1987). doi: 10.1063/1.452949
    [7]
    R. Schinke, R. L. Vanderwal, J. L. Scott, and F. F. Crim, J. Chem. Phys. 94, 283 (1991). doi: 10.1063/1.460395
    [8]
    V. Engel, V. Staemmler, R. L. Vanderwal, F. F. Crim, R. J. Sension, B. Hudson, P. Andresen, S. Hennig, K. Weide, and R. Schinke, J. Phys. Chem. 96, 3201 (1992). doi: 10.1021/j100187a007
    [9]
    M. Brouard, S. R. Langford, and D. E. Manolopoulos, J. Chem. Phys. 101, 7458 (1994). doi: 10.1063/1.468268
    [10]
    M. Brouard and S. R. Langford, J. Chem. Phys. 106, 6354 (1997). doi: 10.1063/1.473625
    [11]
    R. Schinke, V. Engel, and V. Staemmler, Chem. Phys. Lett. 116, 165 (1985). doi: 10.1016/0009-2614(85)80147-0
    [12]
    G. G. Balintkurti, J. Chem. Phys. 84, 4443 (1986). doi: 10.1063/1.450015
    [13]
    S. Hennig, V. Engel, R. Schinke, and V. Staemmler, Chem. Phys. Lett. 149, 455 (1988). doi: 10.1016/0009-2614(88)80363-4
    [14]
    K. Kühl and R. Schinke, Chem. Phys. Lett. 158, 81 (1989). doi: 10.1016/0009-2614(89)87298-7
    [15]
    J. Z. Zhang and D. G. Imre, J. Chem. Phys. 90, 1666 (1989). doi: 10.1063/1.456060
    [16]
    L. Zhou, D. Xie, Z. Sun, and H. Guo, J. Chem. Phys. 140, 024310 (2014). doi: 10.1063/1.4861230
    [17]
    F. Flouquet and J. A. Horsley, J. Chem. Phys. 60, 3767 (1974). doi: 10.1063/1.1680817
    [18]
    E. Segev and M. Shapiro, J. Chem. Phys. 77, 5604 (1982). doi: 10.1063/1.443767
    [19]
    G. Theodorakopoulos, I. D. Petsalakis, and R. J. Buenker, Chem. Phys. 96, 217 (1985). doi: 10.1016/0301-0104(85)85086-2
    [20]
    R. N. Dixon, Mol. Phys. 54, 333 (1985). doi: 10.1080/00268978500100271
    [21]
    L. J. Dunne, H. Guo, and J. N. Murrell, Mol. Phys. 62, 283 (1987). doi: 10.1080/00268978700102201
    [22]
    K. Weide and R. Schinke, J. Chem. Phys. 87, 4627 (1987). doi: 10.1063/1.452824
    [23]
    K. Weide and R. Schinke, J. Chem. Phys. 90, 7150 (1989). doi: 10.1063/1.456680
    [24]
    K. Weide, K. Kühl, and R. Schinke, J. Chem. Phys. 91, 3999 (1989). doi: 10.1063/1.456830
    [25]
    H. Guo, Mol. Phys. 68, 249 (1989). doi: 10.1080/00268978900102101
    [26]
    B. Heumann, K. Kuhl, K. Weide, R. Duren, B. Hess, U. Meier, S. D. Peyerimhoff, and R. Schinke, Chem. Phys. Lett. 166, 385 (1990). doi: 10.1016/0009-2614(90)85048-H
    [27]
    M. von Dirke, B. Heumann, K. Kühl, T. Schröder, and R. Schinke, J. Chem. Phys. 101, 2051 (1994). doi: 10.1063/1.467713
    [28]
    R. N. Dixon, J. Chem. Phys. 102, 301 (1995). doi: 10.1063/1.469403
    [29]
    D. R. Yarkony, Mol. Phys. 93, 971 (1998).
    [30]
    R. van Harrevelt and M. C. van Hemert, J. Chem. Phys. 112, 5777 (2000). doi: 10.1063/1.481153
    [31]
    R. van Harrevelt and M. C. van Hemert, J. Chem. Phys. 112, 5787 (2000). doi: 10.1063/1.481154
    [32]
    R. van Harrevelt, M. C. van Hemert, and G. C. Schatz, J. Phys. Chem. A 105, 11480 (2001).
    [33]
    R. van Harrevelt and M. C. van Hemert, J. Phys. Chem. A 112, 3002 (2008). doi: 10.1021/jp711857w
    [34]
    T. Carrington, J. Chem. Phys. 41, 2012 (1964). doi: 10.1063/1.1726197
    [35]
    A. Hodgson, J. P. Simons, M. N. R. Ashfold, J. M. Bayley, and R. N. Dixon, Mol. Phys. 54, 351 (1985). doi: 10.1080/00268978500100281
    [36]
    H. J. Krautwald, L. Schnieder, K. H. Welge, and M. N. R. Ashfold, Faraday Discuss. 82, 99 (1986). doi: 10.1039/DC9868200099
    [37]
    D. H. Mordaunt, M. N. R. Ashfold, and R. N. Dixon, J. Chem. Phys. 100, 7360 (1994). doi: 10.1063/1.466880
    [38]
    R. N. Dixon, D. W. Hwang, X. F. Yang, S. Harich, J. J. Lin, and X. Yang, Science 285, 1249 (1999). doi: 10.1126/science.285.5431.1249
    [39]
    D. W. Hwang, X. F. Yang, S. Harich, J. J. Lin, and X. Yang, J. Chem. Phys. 110, 4123 (1999). doi: 10.1063/1.478294
    [40]
    A. H. Zanganeh, J. H. Fillion, J. Ruiz, M. Castillejo, J. L. Lemaire, N. Shafizadeh, and F. Rostas, J. Chem. Phys. 112, 5660 (2000). doi: 10.1063/1.481141
    [41]
    S. A. Harich, D. W. H. Hwang, X. Yang, J. J. Lin, X. Yang, and R. N. Dixon, J. Chem. Phys. 113, 10073 (2000). doi: 10.1063/1.1322059
    [42]
    S. A. Harich, X. Yang, D. W. H. Hwang, J. J. Lin, X. Yang, and R. N. Dixon, J. Chem. Phys. 114, 7830 (2001). doi: 10.1063/1.1364683
    [43]
    S. A. Harich, Y. F. Yang, and X. M. Yang, Phys. Rev. Lett. 87, 253201 (2001). doi: 10.1103/PhysRevLett.87.253201
    [44]
    J. H. Fillion, R. van Harrevelt, J. Ruiz, M. Castillejo, A. H. Zanganeh, J. L. Lemaire, M. C. van Hemert, and F. Rostas, J. Phys. Chem. A 105, 11414 (2001).
    [45]
    J. Underwood and C. Wittig, Chem. Phys. Lett. 386, 190 (2004). doi: 10.1016/j.cplett.2004.01.030
    [46]
    B. M. Cheng, C. Y. Chung, M. Bahou, Y. P. Lee, L. C. Lee, R. van Harrevelt, and M. C. van Hemert, J. Chem. Phys. 120, 224 (2004). doi: 10.1063/1.1630304
    [47]
    R. Mota, R. Parafita, A. Giuliani, M. J. Hubin-Franskin, J. M. C. Lourenco, G. Garcia, S. V. Hoffmann, N. J. Mason, P. A. Ribeiro, M. Raposo, and P. Limao-Vieira, Chem. Phys. Lett. 416, 152 (2005). doi: 10.1016/j.cplett.2005.09.073
    [48]
    Y. Cheng, K. Yuan, L. Cheng, Q. Guo, D. Dai, and X. Yang, J. Chem. Phys. 134, 064301 (2011). doi: 10.1063/1.3554213
    [49]
    M. von Dirke, B. Heumann, R. Schinke, R. J. Sension, and B. S. Hudson, J. Chem. Phys. 99, 1050 (1993). doi: 10.1063/1.465404
    [50]
    J. Bin, D. Q. Xie, and H. Guo, J. Chem. Phys. 136, 034302 (2012). doi: 10.1063/1.3676725
    [51]
    H. T. Wang, W. S. Felps, and S. P. McGlynn, J. Chem. Phys. 67, 2614 (1977). doi: 10.1063/1.435173
    [52]
    M. N. R. Ashfold, J. M. Bayley, and R. N. Dixon, Chem. Phys. 84, 35 (1984). doi: 10.1016/0301-0104(84)80004-X
    [53]
    M. N. R. Ashfold, J. M. Bayley, and R. N. Dixon, Can. J. Phys. 62, 1806 (1984). doi: 10.1139/p84-226
    [54]
    H. H. Kuge and K. Kleinermanns, J. Chem. Phys. 90, 46 (1989). doi: 10.1063/1.456497
    [55]
    C. Fotakis, C. B. McKendrick, and R. J. Donovan, Chem. Phys. Lett. 80, 598 (1981). doi: 10.1016/0009-2614(81)85086-5
    [56]
    G. Meijer, J. J. Termeulen, P. Andresen, and A. Bath, J. Chem. Phys. 85, 6914 (1986). doi: 10.1063/1.451845
    [57]
    K. Yuan, Y. Cheng, L. Cheng, Q. Guo, D. Dai, X. Wang, X. Yang, and R. N. Dixon, Proc. Natl. Acad. Sci. USA 105, 19148 (2008). doi: 10.1073/pnas.0807719105
    [58]
    C. H. Yang, G. Sarma, J. J. ter Meulen, D. H. Parker, and C. M. Western, Phys. Chem. Chem. Phys. 12, 13983 (2010). doi: 10.1039/c0cp00946f
    [59]
    K. Yuan, R. N. Dixon, and X. Yang, Accounts Chem. Res. 44, 369 (2011). doi: 10.1021/ar100153g
    [60]
    K. Yuan, Y. Cheng, L. Cheng, Q. Guo, D. Dai, X. Yang, and R. N. Dixon, J. Chem. Phys. 133, 134301 (2010). doi: 10.1063/1.3487736
    [61]
    Y. Cheng, L. Cheng, Q. Guo, K. Yuan, D. Dai, X. Wang, R. N. Dixon, and X. Yang, J. Chem. Phys. 133, 034307 (2010). doi: 10.1063/1.3457942
    [62]
    L. Cheng, K. Yuan, Y. Cheng, Q. Guo, X. Yang, and R. N. Dixon, Mol. Phys. 108, 905 (2010). doi: 10.1080/00268970903563469
    [63]
    L. Cheng, K. Yuan, Y. Cheng, Q. Guo, T. Wang, D. Dai, X. Yang, and R. N. Dixon, J. Phys. Chem. A 115, 1500 (2011). doi: 10.1021/jp109169f
    [64]
    Z. He, D. Yang, Z. Chen, K. Yuan, D. Dai, G. Wu, and X. Yang, Phys. Chem. Chem. Phys. 19, 29795 (2017). doi: 10.1039/C7CP06286A
    [65]
    R. N. Dixon, T. A. A. Oliver, L. Cheng, Y. Cheng, K. Yuan, and X. Yang, J. Chem. Phys. 138, 104306 (2013). doi: 10.1063/1.4794158
    [66]
    D. M. Hirst and M. S. Child, Mol. Phys. 77, 463 (1992). doi: 10.1080/00268979200102551
    [67]
    O. Steinkellner, F. Noack, H. H. Ritze, W. Radloff, and I. V. Hertel, J. Chem. Phys. 121, 1765 (2004). doi: 10.1063/1.1760732
    [68]
    K. Yuan, L. Cheng, Y. Cheng, Q. Guo, D. Dai, and X. Yang, J. Chem. Phys. 131, 074301 (2009). doi: 10.1063/1.3168398
    [69]
    P. L. Smith, K. Yoshino, H. E. Griesinger, and J. H. Black, Astrophys. J. 250, 166 (1981). doi: 10.1086/159359
    [70]
    J. H. Fillion, J. Ruiz, X. F. Yang, M. Castillejo, F. Rostas, and J. L. Lemaire, J. Chem. Phys. 120, 6531 (2004). doi: 10.1063/1.1652566
    [71]
    H. Wang, Y. Yu, Y. Chang, S. Su, S. Yu, Q. Li, K. Tao, H. Ding, J. Yang, G. Wang, L. Che, Z. He, Z. Chen, X. Wang, W. Zhang, D. Dai, G. Wu, K. Yuan, and X. Yang, J. Chem. Phys. 148, 124301 (2018). doi: 10.1063/1.5022108
    [72]
    Y. Chang, S. Yu, Q. Li, Y. Yu, H. Wang, S. Su, Z. Chen, L. Che, X. Wang, W. Zhang, D. Dai, G. Wu, K. Yuan, and X. Yang, Rev. Sci. Instrum. 89, 063113 (2018). doi: 10.1063/1.5017757
    [73]
    Y. Chang, F. An, Q. Li, Z. Luo, L. Che, J. Yang, Z. Chen, W. Zhang, G. Wu, X. Hu, D. Xie, K. Yuan, and X. Yang, J. Phys. Chem. Lett. 11, 7617 (2020). doi: 10.1021/acs.jpclett.0c02320
    [74]
    Y. Chang, Q. Li, F. An, Z. Luo, Y. Zhao, Y. Yu, Z. He, Z. Chen, L. Che, H. Ding, W. Zhang, G. Wu, X. Hu, D. Xie, J. M. C. Plane, W. Feng, C. M. Western, M. N. R. Ashfold, K. Yuan, and X. Yang, J. Phys. Chem. Lett. 11, 9086 (2020). doi: 10.1021/acs.jpclett.0c02803
    [75]
    Y. Chang, Y. Yu, F. An, Z. Luo, D. Quan, X. Zhang, X. Hu, Q. Li, J. Yang, Z. Chen, L. Che, W. Zhang, G. Wu, D. Xie, M. N. R. Ashfold, K. Yuan, and X. Yang, Nat. Commun. 12, 2476 (2021). doi: 10.1038/s41467-021-22824-7
    [76]
    Y. Chang, Z. He, Z. Luo, J. Zhou, Z. Zhang, Z. Chen, J. Yang, Y. Yu, Q. Li, L. Che, G. Wu, X. Wang, X. Yang, and K. Yuan, Chin. J. Chem. Phys. 33, 139 (2020). doi: 10.1063/1674-0068/cjcp2001008
    [77]
    H. J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985). doi: 10.1063/1.448627
    [78]
    P. J. Knowles and H. J. Werner, Chem. Phys. Lett. 115, 259 (1985). doi: 10.1016/0009-2614(85)80025-7
    [79]
    H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, WIREs Comput. Mol. Sci. 2, 242 (2012). doi: 10.1002/wcms.82
    [80]
    K. A. Peterson, T. B. Adler, and H. J. Werner, J. Chem. Phys. 128, 084102 (2008). doi: 10.1063/1.2831537
    [81]
    T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989). doi: 10.1063/1.456153
    [82]
    B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009). doi: 10.1080/01442350903234923
    [83]
    B. Jiang, J. Li, and H. Guo, Int. Rev. Phys. Chem. 35, 479 (2016). doi: 10.1080/0144235X.2016.1200347
    [84]
    B. Jiang and H. Guo, J. Chem. Phys. 139, 054112 (2013). doi: 10.1063/1.4817187
    [85]
    A. P. Bartok and C. Gábor, Int. J. Quantum Chem. 115, 1051 (2015). doi: 10.1002/qua.24927
    [86]
    J. Cui and R. V. Krems, Phys. Rev. Lett. 115, 073202 (2015). doi: 10.1103/PhysRevLett.115.073202
    [87]
    B. Kolb, P. Marshall, B. Zhao, B. Jiang, and H. Guo, J. Phys. Chem. A 121, 2552 (2017). doi: 10.1021/acs.jpca.7b01182
    [88]
    Y. Guan, S. Yang, and D. H. Zhang, Mol. Phys. 116, 823 (2018). doi: 10.1080/00268976.2017.1407460
    [89]
    Kocijan, Modelling and Control of Dynamic Systems Using Gaussian Process Models, Springer International Publishing, (2016).
    [90]
    C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), The MIT Press, (2005).
    [91]
    B. Minasny and A. B. McBratney, Geoderma 128, 192 (2005). doi: 10.1016/j.geoderma.2005.04.003
    [92]
    C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, ACM T. Math. Software 23, 550 (1997). doi: 10.1145/279232.279236
    [93]
    J. L. Morales and J. Nocedal, ACM T. Math. Software 38, 1 (2011).
    [94]
    Z. L. Cai, D. J. Tozer, and J. R. Reimers, J. Chem. Phys. 113, 7084 (2000). doi: 10.1063/1.1312826
    [95]
    G. Theodorakopoulos, I. D. Petsalakis, R. J. Buenker, and S. D. Peyerimhoff, Chem. Phys. Lett. 105, 253 (1984). doi: 10.1016/0009-2614(84)85024-1
    [96]
    S. Bell, J. Mol. Spectrosc. 16, 205 (1965). doi: 10.1016/0022-2852(65)90098-6
    [97]
    J. W. C. Johns, Can. J. Phys. 49, 944 (1971). doi: 10.1139/p71-114
    [98]
    G. Herzberg, Molecular Spectra and Molecular Structure, Volume 3, Electronic Spectra and Electronic Structure of Polyatomic Molecules, Princeton: D. Van Nostrand Company, Inc. (1966).
    [99]
    E. H. Abramson, J. Zhang, and D. G. Imre, J. Chem. Phys. 93, 947 (1990). doi: 10.1063/1.459120
    [100]
    A. R. Hoy and P. R. Bunker, J. Mol. Spectrosc. 74, 1 (1979). doi: 10.1016/0022-2852(79)90019-5
    [101]
    A. Chutjian, R. I. Hall, and S. Trajmar, J. Chem. Phys. 63, 892 (1975). doi: 10.1063/1.431370
    [102]
    J. W. C. Johns, Can. J. Phys. 41, 209 (1963). doi: 10.1139/p63-027
    [103]
    R. D. Gilbert, M. S. Child, and J. W. C. Johns, Mol. Phys. 74, 473 (1991). doi: 10.1080/00268979100102371
    [104]
    J. N. Murrell, S. Carter, I. M. Mills, and M. F. Guest, Mol. Phys. 42, 605 (1981). doi: 10.1080/00268978100100491
    [105]
    A. E. Kramida, Atom. Data Nucl. Data 96, 586 (2010). doi: 10.1016/j.adt.2010.05.001
    [106]
    C. E. Moore, Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions, Boca Raton: CRC Press, (1993).
    [107]
    W. Kołos, Chem. Phys. Lett. 31, 43 (1975). doi: 10.1016/0009-2614(75)80053-4
    [108]
    T. S. Ho, T. Hollebeek, H. Rabitz, L. B. Harding, and G. C. Schatz, J. Chem. Phys. 105, 10472 (1996). doi: 10.1063/1.472977
    [109]
    A. J. Dobbyn and P. J. Knowles, Mol. Phys. 91, 1107 (1997).
    [110]
    K. M. Hickson and Y. V. Suleimanov, J. Phys. Chem. A 121, 1916 (2017). doi: 10.1021/acs.jpca.7b00722
    [111]
    F. Schneider, F. D. Giacomo, and F. A. Gianturco, J. Chem. Phys. 104, 5153 (1996). doi: 10.1063/1.471142
    [112]
    G. Durand and X. Chapuisat, Chem. Phys. 96, 381 (1985). doi: 10.1016/0301-0104(85)85101-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (478) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return