Citation: | Wei Zhang, Jie Kong, Wenqi Xu, Xinmiao Niu, Di Song, Weimin Liu, Andong Xia. Probing Effect of Solvation on Photoexcited Quadrupolar Donor-Acceptor-Donor Molecule via Ultrafast Raman Spectroscopy[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 69-76. doi: 10.1063/1674-0068/cjcp2111223 |
The symmetric and quadrupolar donor-acceptordonor (D-A-D) molecules usually exhibit excitedstate charge redistribution process from delocalized intramolecular charge transfer (ICT) state to localized ICT state. Direct observation of such charge redistribution process in real-time has been intensively studied via various ultrafast time-resolved spectroscopies. Femtosecond stimulated Raman spectroscopy (FSRS) is one of the powerful methods which can be used to determine the excited state dynamics by tracking vibrational mode evolution of the specific chemical bonds within molecules. Herein, a molecule, 4, 4′-(buta-1, 3-diyne-1, 4-diyl)bis(N, N-bis(4-methoxyphenyl)aniline), that consists of two central adjacent alkyne (-C≡C-) groups as electron-acceptors and two separated, symmetric N, N-bis(4-methoxyphenyl)aniline at both branches as electron-donors, is chosen to investigate the excited-state photophysical properties. It is shown that the solvation induced excited-state charge redistribution in polar solvents can be probed by using femtosecond stimulated Raman spectroscopy. The results provide a fundamental understanding of photoexcitation induced charge delocalization/localization properties of the symmetric quadrupolar molecules with adjacent vibrational markers located at central position.
[1] |
M. Albota, D. Beljonne, J. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, Science 281, 1653 (1998). doi: 10.1126/science.281.5383.1653
|
[2] |
B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, Nature 398, 51 (1999). doi: 10.1038/17989
|
[3] |
K. D. Belfield and K. J. Schafer, Chem. Mater. 14, 3656 (2002). doi: 10.1021/cm010799t
|
[4] |
M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, Angew. Chem. Int. Ed. 48, 3244 (2009). doi: 10.1002/anie.200805257
|
[5] |
J. Träger, H. C. Kim, and N. Hampp, Nat. Photonics 1, 509 (2007). doi: 10.1038/nphoton.2007.162
|
[6] |
W. Denk, J. Strickler, and W. Webb, Science 248, 73 (1990). doi: 10.1126/science.2321027
|
[7] |
F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, Adv. Mater. 20, 4641 (2008). doi: 10.1002/adma.200800402
|
[8] |
G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008). doi: 10.1021/cr050054x
|
[9] |
X. Wang, D. Wang, G. Zhou, W. Yu, Y. Zhou, Q. Fang, and M. Jiang, J. Mater. Chem. 11, 1600 (2001). doi: 10.1039/b009769l
|
[10] |
Y. Wang, G. S. He, P. N. Prasad, and T. Goodson, J. Am. Chem. Soc. 127, 10128 (2005). doi: 10.1021/ja051099i
|
[11] |
H. Y. Woo, B. Liu, B. Kohler, D. Korystov, A. Mikhailovsky, and G. C. Bazan, J. Am. Chem. Soc. 127, 14721 (2005). doi: 10.1021/ja052906g
|
[12] |
A. Bhaskar, G. Ramakrishna, Z. Lu, R. Twieg, J. M. Hales, D. J. Hagan, E. Van Stryland, and T. Goodson, J. Am. Chem. Soc. 128, 11840 (2006). doi: 10.1021/ja060630m
|
[13] |
J. Kong, W. Zhang, G. Li, D. Huo, Y. Guo, X. Niu, Y. Wan, B. Tang, and A. Xia, J. Phys. Chem. Lett. 11, 10329 (2020). doi: 10.1021/acs.jpclett.0c03210
|
[14] |
D. Aumiler, S. Wang, X. Chen, and A. Xia, J. Am. Chem. Soc. 131, 5742 (2009). doi: 10.1021/ja901268h
|
[15] |
B. Dereka, A. Rosspeintner, M. Krzeszewski, D. T. Gryko, and E. Vauthey, Angew. Chem. Int. Ed. 55, 15624 (2016). doi: 10.1002/anie.201608567
|
[16] |
B. Dereka, A. Rosspeintner, Z. Li, R. Liska, and E. Vauthey, J. Am. Chem. Soc. 138, 4643 (2016). doi: 10.1021/jacs.6b01362
|
[17] |
Y. Li, G. He, X. Wang, Q. Guo, Y. Niu, and A. Xia, ChemPhysChem 17, 406 (2016). doi: 10.1002/cphc.201501001
|
[18] |
M. Quick, A. L. Dobryakov, I. N. Ioffe, A. A. Granovsky, S. A. Kovalenko, and N. P. Ernsting, J. Phys. Chem. Lett. 7, 4047 (2016). doi: 10.1021/acs.jpclett.6b01923
|
[19] |
B. Dereka, M. Koch, and E. Vauthey, Acc. Chem. Res. 50, 426 (2017). doi: 10.1021/acs.accounts.6b00538
|
[20] |
B. Dereka, A. Rosspeintner, R. Stȩżycki, C. Ruckebusch, D. T. Gryko, and E. Vauthey, J. Phys. Chem. Lett. 8, 6029 (2017). doi: 10.1021/acs.jpclett.7b02944
|
[21] |
W. Zhang, W. Xu, G. Zhang, J. Kong, X. Niu, J. M. W. Chan, W. Liu, and A. Xia, J. Phys. Chem. B 125, 4456 (2021). doi: 10.1021/acs.jpcb.1c01742
|
[22] |
F. Terenziani, A. Painelli, C. Katan, M. Charlot, and M. Blanchard-Desce, J. Am. Chem. Soc. 128, 15742 (2006). doi: 10.1021/ja064521j
|
[23] |
C. Katan, F. Terenziani, O. Mongin, M. H. V. Werts, L. Porrès, T. Pons, J. Mertz, S. Tretiak, and M. Blanchard-Desce, J. Phys. Chem. A 109, 3024 (2005). doi: 10.1021/jp044193e
|
[24] |
J. J. Piet, W. Schuddeboom, B. R. Wegewijs, F. C. Grozema, and J. M. Warman, J. Am. Chem. Soc. 123, 5337 (2001). doi: 10.1021/ja004341o
|
[25] |
S. A. Lahankar, R. West, O. Varnavski, X. Xie, T. Goodson Ⅲ, L. Sukhomlinova, and R. Twieg, J. Chem. Phys. 120, 337 (2004). doi: 10.1063/1.1630309
|
[26] |
O. P. Varnavski, J. C. Ostrowski, L. Sukhomlinova, R. J. Twieg, G. C. Bazan, and T. Goodson, J. Am. Chem. Soc. 124, 1736 (2002). doi: 10.1021/ja011038u
|
[27] |
B. Carlotti, E. Benassi, A. Spalletti, C. G. Fortuna, F. Elisei, and V. Barone, Phys. Chem. Chem. Phys. 16, 13984 (2014). doi: 10.1039/C4CP00631C
|
[28] |
Y. Li, M. Zhou, Y. Niu, Q. Guo, and A. Xia, J. Chem. Phys. 143, 034309 (2015). doi: 10.1063/1.4926998
|
[29] |
J. S. Beckwith, A. Rosspeintner, G. Licari, M. Lunzer, B. Holzer, J. Fröhlich, and E. Vauthey, J. Phys. Chem. Lett. 8, 5878 (2017). doi: 10.1021/acs.jpclett.7b02754
|
[30] |
X. Niu, Z. Kuang, M. Planells, Y. Guo, N. Robertson, and A. Xia, Phys. Chem. Chem. Phys. 22, 15743 (2020). doi: 10.1039/D0CP02527E
|
[31] |
M. Söderberg, B. Dereka, A. Marrocchi, B. Carlotti, and E. Vauthey, J. Phys. Chem. Lett. 10, 2944 (2019). doi: 10.1021/acs.jpclett.9b01024
|
[32] |
M. Planells, A. Abate, D. J. Hollmanb, S. D. Stranksb, V. Bhartic, J. Gaurc, D. Mohantyc, S. Chandc, H. J. Snaith, and N. Robertson, J. Mater. Chem. A 1, 6949 (2013). doi: 10.1039/c3ta11417a
|
[33] |
B. Schrader, Infrared and Raman Spectroscopy, VCH Verlagsgesellschaft mbH, 189 (1995).
|
[34] |
A. M. Brouwer, Pure Appl. Chem. 83, 2213 (2011). doi: 10.1351/PAC-REP-10-09-31
|
[35] |
M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision E. 01, Gaussian, Inc., (2013).
|
[36] |
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994). doi: 10.1021/j100096a001
|
[37] |
T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). doi: 10.1002/jcc.22885
|
[38] |
G. Ramakrishna and T. Goodson, J. Phys. Chem. A 111, 993 (2007). doi: 10.1021/jp064004n
|
[39] |
B. Dereka, D. Svechkarev, A. Rosspeintner, A. Aster, M. Lunzer, R. Liska, A. M. Mohs, and E. Vauthey, Nat. Commun. 11, 1925 (2020). doi: 10.1038/s41467-020-15681-3
|
[40] |
S. Kayal, K. Roy, Y. A. Lakshmanna, and S. Umapathy, J. Chem. Phys. 149, 044310 (2018). doi: 10.1063/1.5028274
|
[41] |
G. D. Ewen Smith, Modern Raman Spectroscopy-A Practical Approach, England: John Wiley & Sons, Ltd., 76 (2005).
|
[42] |
B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications, Federal Republic of Germany: Fikentscher GroRbuchbinderei, D-6429.5 Darmstadt, 7 (1995).
|
[43] |
P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, Science 310, 1006 (2005). doi: 10.1126/science.1118379
|
[44] |
S. Kayal, K. Roy, and S. Umapathy, J. Chem. Phys. 148, 024301 (2018). doi: 10.1063/1.5008726
|
[45] |
B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications, Federal Republic of Germany: Fikentscher GroRbuchbinderei, D-6429.5 Darmstadt, 34 (1995).
|
[46] |
J. M. Artes Vivancos, I. H. M. van Stokkum, F. Saccon, Y. Hontani, M. Kloz, A. Ruban, R. van Grondelle, and J. T. M. Kennis, J. Am. Chem. Soc. 142, 17346 (2020). doi: 10.1021/jacs.0c04619
|
[47] |
H. Kuramochi, S. Takeuchi, and T. Tahara, J. Phys. Chem. Lett. 3, 2025 (2012). doi: 10.1021/jz300542f
|
[48] |
G. Batignani, E. Pontecorvo, C. Ferrante, M. Aschi, C. G. Elles, and T. Scopigno, J. Phys. Chem. Lett. 7, 2981 (2016). doi: 10.1021/acs.jpclett.6b01137
|
[49] |
H. Kuramochi, S. Takeuchi, K. Yonezawa, H. Kamikubo, M. Kataoka, and T. Tahara, Nat. Chem. 9, 660 (2017). doi: 10.1038/nchem.2717
|
[50] |
W. Kim, T. Kim, S. Kang, Y. Hong, F. Wrthner, and D. Kim, Angew. Chem. Int. Ed. 59, 8571 (2020). doi: 10.1002/anie.202002733
|
[51] |
M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli, J. Phys. Chem. 99, 17311 (1995). doi: 10.1021/j100048a004
|
[52] |
A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, J. Phys. Chem. A 118, 3749 (2014). doi: 10.1021/jp5009658
|
[53] |
T. Kumpulainen, B. Lang, A. Rosspeintner, and E. Vauthey, Chem. Rev. 117, 10826 (2017). doi: 10.1021/acs.chemrev.6b00491
|
[54] |
B. Valeur, Molecular Fluorescence: Principles and Applications, New York: Wiley-VCH Verlag GmbH (2001).
|