Volume 35 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Wei Zhang, Jie Kong, Wenqi Xu, Xinmiao Niu, Di Song, Weimin Liu, Andong Xia. Probing Effect of Solvation on Photoexcited Quadrupolar Donor-Acceptor-Donor Molecule via Ultrafast Raman Spectroscopy[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 69-76. doi: 10.1063/1674-0068/cjcp2111223
Citation: Wei Zhang, Jie Kong, Wenqi Xu, Xinmiao Niu, Di Song, Weimin Liu, Andong Xia. Probing Effect of Solvation on Photoexcited Quadrupolar Donor-Acceptor-Donor Molecule via Ultrafast Raman Spectroscopy[J]. Chinese Journal of Chemical Physics , 2022, 35(1): 69-76. doi: 10.1063/1674-0068/cjcp2111223

Probing Effect of Solvation on Photoexcited Quadrupolar Donor-Acceptor-Donor Molecule via Ultrafast Raman Spectroscopy

doi: 10.1063/1674-0068/cjcp2111223
More Information
  • The symmetric and quadrupolar donor-acceptordonor (D-A-D) molecules usually exhibit excitedstate charge redistribution process from delocalized intramolecular charge transfer (ICT) state to localized ICT state. Direct observation of such charge redistribution process in real-time has been intensively studied via various ultrafast time-resolved spectroscopies. Femtosecond stimulated Raman spectroscopy (FSRS) is one of the powerful methods which can be used to determine the excited state dynamics by tracking vibrational mode evolution of the specific chemical bonds within molecules. Herein, a molecule, 4, 4′-(buta-1, 3-diyne-1, 4-diyl)bis(N, N-bis(4-methoxyphenyl)aniline), that consists of two central adjacent alkyne (-C≡C-) groups as electron-acceptors and two separated, symmetric N, N-bis(4-methoxyphenyl)aniline at both branches as electron-donors, is chosen to investigate the excited-state photophysical properties. It is shown that the solvation induced excited-state charge redistribution in polar solvents can be probed by using femtosecond stimulated Raman spectroscopy. The results provide a fundamental understanding of photoexcitation induced charge delocalization/localization properties of the symmetric quadrupolar molecules with adjacent vibrational markers located at central position.

     

  • Part of Special Issue "In Memory of Prof. Nanquan Lou on the occasion of his 100th anniversary".
  • loading
  • [1]
    M. Albota, D. Beljonne, J. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, Science 281, 1653 (1998). doi: 10.1126/science.281.5383.1653
    [2]
    B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, Nature 398, 51 (1999). doi: 10.1038/17989
    [3]
    K. D. Belfield and K. J. Schafer, Chem. Mater. 14, 3656 (2002). doi: 10.1021/cm010799t
    [4]
    M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, Angew. Chem. Int. Ed. 48, 3244 (2009). doi: 10.1002/anie.200805257
    [5]
    J. Träger, H. C. Kim, and N. Hampp, Nat. Photonics 1, 509 (2007). doi: 10.1038/nphoton.2007.162
    [6]
    W. Denk, J. Strickler, and W. Webb, Science 248, 73 (1990). doi: 10.1126/science.2321027
    [7]
    F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, and M. Blanchard-Desce, Adv. Mater. 20, 4641 (2008). doi: 10.1002/adma.200800402
    [8]
    G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008). doi: 10.1021/cr050054x
    [9]
    X. Wang, D. Wang, G. Zhou, W. Yu, Y. Zhou, Q. Fang, and M. Jiang, J. Mater. Chem. 11, 1600 (2001). doi: 10.1039/b009769l
    [10]
    Y. Wang, G. S. He, P. N. Prasad, and T. Goodson, J. Am. Chem. Soc. 127, 10128 (2005). doi: 10.1021/ja051099i
    [11]
    H. Y. Woo, B. Liu, B. Kohler, D. Korystov, A. Mikhailovsky, and G. C. Bazan, J. Am. Chem. Soc. 127, 14721 (2005). doi: 10.1021/ja052906g
    [12]
    A. Bhaskar, G. Ramakrishna, Z. Lu, R. Twieg, J. M. Hales, D. J. Hagan, E. Van Stryland, and T. Goodson, J. Am. Chem. Soc. 128, 11840 (2006). doi: 10.1021/ja060630m
    [13]
    J. Kong, W. Zhang, G. Li, D. Huo, Y. Guo, X. Niu, Y. Wan, B. Tang, and A. Xia, J. Phys. Chem. Lett. 11, 10329 (2020). doi: 10.1021/acs.jpclett.0c03210
    [14]
    D. Aumiler, S. Wang, X. Chen, and A. Xia, J. Am. Chem. Soc. 131, 5742 (2009). doi: 10.1021/ja901268h
    [15]
    B. Dereka, A. Rosspeintner, M. Krzeszewski, D. T. Gryko, and E. Vauthey, Angew. Chem. Int. Ed. 55, 15624 (2016). doi: 10.1002/anie.201608567
    [16]
    B. Dereka, A. Rosspeintner, Z. Li, R. Liska, and E. Vauthey, J. Am. Chem. Soc. 138, 4643 (2016). doi: 10.1021/jacs.6b01362
    [17]
    Y. Li, G. He, X. Wang, Q. Guo, Y. Niu, and A. Xia, ChemPhysChem 17, 406 (2016). doi: 10.1002/cphc.201501001
    [18]
    M. Quick, A. L. Dobryakov, I. N. Ioffe, A. A. Granovsky, S. A. Kovalenko, and N. P. Ernsting, J. Phys. Chem. Lett. 7, 4047 (2016). doi: 10.1021/acs.jpclett.6b01923
    [19]
    B. Dereka, M. Koch, and E. Vauthey, Acc. Chem. Res. 50, 426 (2017). doi: 10.1021/acs.accounts.6b00538
    [20]
    B. Dereka, A. Rosspeintner, R. Stȩżycki, C. Ruckebusch, D. T. Gryko, and E. Vauthey, J. Phys. Chem. Lett. 8, 6029 (2017). doi: 10.1021/acs.jpclett.7b02944
    [21]
    W. Zhang, W. Xu, G. Zhang, J. Kong, X. Niu, J. M. W. Chan, W. Liu, and A. Xia, J. Phys. Chem. B 125, 4456 (2021). doi: 10.1021/acs.jpcb.1c01742
    [22]
    F. Terenziani, A. Painelli, C. Katan, M. Charlot, and M. Blanchard-Desce, J. Am. Chem. Soc. 128, 15742 (2006). doi: 10.1021/ja064521j
    [23]
    C. Katan, F. Terenziani, O. Mongin, M. H. V. Werts, L. Porrès, T. Pons, J. Mertz, S. Tretiak, and M. Blanchard-Desce, J. Phys. Chem. A 109, 3024 (2005). doi: 10.1021/jp044193e
    [24]
    J. J. Piet, W. Schuddeboom, B. R. Wegewijs, F. C. Grozema, and J. M. Warman, J. Am. Chem. Soc. 123, 5337 (2001). doi: 10.1021/ja004341o
    [25]
    S. A. Lahankar, R. West, O. Varnavski, X. Xie, T. Goodson Ⅲ, L. Sukhomlinova, and R. Twieg, J. Chem. Phys. 120, 337 (2004). doi: 10.1063/1.1630309
    [26]
    O. P. Varnavski, J. C. Ostrowski, L. Sukhomlinova, R. J. Twieg, G. C. Bazan, and T. Goodson, J. Am. Chem. Soc. 124, 1736 (2002). doi: 10.1021/ja011038u
    [27]
    B. Carlotti, E. Benassi, A. Spalletti, C. G. Fortuna, F. Elisei, and V. Barone, Phys. Chem. Chem. Phys. 16, 13984 (2014). doi: 10.1039/C4CP00631C
    [28]
    Y. Li, M. Zhou, Y. Niu, Q. Guo, and A. Xia, J. Chem. Phys. 143, 034309 (2015). doi: 10.1063/1.4926998
    [29]
    J. S. Beckwith, A. Rosspeintner, G. Licari, M. Lunzer, B. Holzer, J. Fröhlich, and E. Vauthey, J. Phys. Chem. Lett. 8, 5878 (2017). doi: 10.1021/acs.jpclett.7b02754
    [30]
    X. Niu, Z. Kuang, M. Planells, Y. Guo, N. Robertson, and A. Xia, Phys. Chem. Chem. Phys. 22, 15743 (2020). doi: 10.1039/D0CP02527E
    [31]
    M. Söderberg, B. Dereka, A. Marrocchi, B. Carlotti, and E. Vauthey, J. Phys. Chem. Lett. 10, 2944 (2019). doi: 10.1021/acs.jpclett.9b01024
    [32]
    M. Planells, A. Abate, D. J. Hollmanb, S. D. Stranksb, V. Bhartic, J. Gaurc, D. Mohantyc, S. Chandc, H. J. Snaith, and N. Robertson, J. Mater. Chem. A 1, 6949 (2013). doi: 10.1039/c3ta11417a
    [33]
    B. Schrader, Infrared and Raman Spectroscopy, VCH Verlagsgesellschaft mbH, 189 (1995).
    [34]
    A. M. Brouwer, Pure Appl. Chem. 83, 2213 (2011). doi: 10.1351/PAC-REP-10-09-31
    [35]
    M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision E. 01, Gaussian, Inc., (2013).
    [36]
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994). doi: 10.1021/j100096a001
    [37]
    T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). doi: 10.1002/jcc.22885
    [38]
    G. Ramakrishna and T. Goodson, J. Phys. Chem. A 111, 993 (2007). doi: 10.1021/jp064004n
    [39]
    B. Dereka, D. Svechkarev, A. Rosspeintner, A. Aster, M. Lunzer, R. Liska, A. M. Mohs, and E. Vauthey, Nat. Commun. 11, 1925 (2020). doi: 10.1038/s41467-020-15681-3
    [40]
    S. Kayal, K. Roy, Y. A. Lakshmanna, and S. Umapathy, J. Chem. Phys. 149, 044310 (2018). doi: 10.1063/1.5028274
    [41]
    G. D. Ewen Smith, Modern Raman Spectroscopy-A Practical Approach, England: John Wiley & Sons, Ltd., 76 (2005).
    [42]
    B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications, Federal Republic of Germany: Fikentscher GroRbuchbinderei, D-6429.5 Darmstadt, 7 (1995).
    [43]
    P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, Science 310, 1006 (2005). doi: 10.1126/science.1118379
    [44]
    S. Kayal, K. Roy, and S. Umapathy, J. Chem. Phys. 148, 024301 (2018). doi: 10.1063/1.5008726
    [45]
    B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications, Federal Republic of Germany: Fikentscher GroRbuchbinderei, D-6429.5 Darmstadt, 34 (1995).
    [46]
    J. M. Artes Vivancos, I. H. M. van Stokkum, F. Saccon, Y. Hontani, M. Kloz, A. Ruban, R. van Grondelle, and J. T. M. Kennis, J. Am. Chem. Soc. 142, 17346 (2020). doi: 10.1021/jacs.0c04619
    [47]
    H. Kuramochi, S. Takeuchi, and T. Tahara, J. Phys. Chem. Lett. 3, 2025 (2012). doi: 10.1021/jz300542f
    [48]
    G. Batignani, E. Pontecorvo, C. Ferrante, M. Aschi, C. G. Elles, and T. Scopigno, J. Phys. Chem. Lett. 7, 2981 (2016). doi: 10.1021/acs.jpclett.6b01137
    [49]
    H. Kuramochi, S. Takeuchi, K. Yonezawa, H. Kamikubo, M. Kataoka, and T. Tahara, Nat. Chem. 9, 660 (2017). doi: 10.1038/nchem.2717
    [50]
    W. Kim, T. Kim, S. Kang, Y. Hong, F. Wrthner, and D. Kim, Angew. Chem. Int. Ed. 59, 8571 (2020). doi: 10.1002/anie.202002733
    [51]
    M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli, J. Phys. Chem. 99, 17311 (1995). doi: 10.1021/j100048a004
    [52]
    A. Rebane, M. Drobizhev, N. S. Makarov, G. Wicks, P. Wnuk, Y. Stepanenko, J. E. Haley, D. M. Krein, J. L. Fore, A. R. Burke, J. E. Slagle, D. G. McLean, and T. M. Cooper, J. Phys. Chem. A 118, 3749 (2014). doi: 10.1021/jp5009658
    [53]
    T. Kumpulainen, B. Lang, A. Rosspeintner, and E. Vauthey, Chem. Rev. 117, 10826 (2017). doi: 10.1021/acs.chemrev.6b00491
    [54]
    B. Valeur, Molecular Fluorescence: Principles and Applications, New York: Wiley-VCH Verlag GmbH (2001).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (749) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return