Volume 35 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Xiangyu Zang, Zhaoyan Zhang, Chong Wang, Tiantong Wang, Huijun Zheng, Hua Xie, Jiayue Yang, Dongxu Dai, Guorong Wu, Weiqing Zhang, Gang Li, Xueming Yang, Ling Jiang. Vacuum Ultraviolet Free-Electron Laser Photoionization Mass Spectrometry of Alpha-pinene Ozonolysis[J]. Chinese Journal of Chemical Physics , 2022, 35(2): 281-288. doi: 10.1063/1674-0068/cjcp2111220
Citation: Xiangyu Zang, Zhaoyan Zhang, Chong Wang, Tiantong Wang, Huijun Zheng, Hua Xie, Jiayue Yang, Dongxu Dai, Guorong Wu, Weiqing Zhang, Gang Li, Xueming Yang, Ling Jiang. Vacuum Ultraviolet Free-Electron Laser Photoionization Mass Spectrometry of Alpha-pinene Ozonolysis[J]. Chinese Journal of Chemical Physics , 2022, 35(2): 281-288. doi: 10.1063/1674-0068/cjcp2111220

Vacuum Ultraviolet Free-Electron Laser Photoionization Mass Spectrometry of Alpha-pinene Ozonolysis

doi: 10.1063/1674-0068/cjcp2111220
More Information
  • Corresponding author: Gang Li, E-mail: gli@dicp.ac.cn; Ling Jiang, E-mail: ljiang@dicp.ac.cn
  • Received Date: 2021-11-02
  • Accepted Date: 2022-01-04
  • Publish Date: 2022-04-27
  • $\alpha$-pinene is the most abundant monoterpene that represents an important family of volatile organic compounds. Molecular identification of key transient compounds during the $\alpha$-pinene ozonolysis has been proven to be a challenging experimental target because of a large number of intermediates and products involved. Here we exploit the recently developed hybrid instruments that integrate aerosol mass spectrometry with a vacuum ultraviolet free-electron laser to study the $\alpha$-pinene ozonolysis. The experiments of $\alpha$-pinene ozonolysis are performed in an indoor smog chamber, with reactor having a volume of 2 m$^3$ which is made of fluorinated ethylene propylene film. Distinct mass spectral peaks provide direct experimental signatures of previously unseen compounds produced from the reaction of $\alpha$-pinene with O$_3$. With the aid of quantum chemical calculations, plausible mechanisms for the formation of these new compounds are proposed. These findings provide crucial information on fundamental understanding of the initial steps of $\alpha$-pinene oxidation and the subsequent processes of new particle formation.

     

  • Part of Special Issue "In Memory of Prof. Nanquan Lou on the occasion of his 100th anniversary".
    These authors contributed equally to this work.
  • loading
  • [1]
    E. von Schneidemesser, P. S. Monks, J. D. Allan, L. Bruhwiler, P. Forster, D. Fowler, A. Lauer, W. T. Morgan, P. Paasonen, M. Righi, K. Sindelarova, and M. A. Sutton, Chem. Rev. 115, 3856 (2015). doi: 10.1021/acs.chemrev.5b00089
    [2]
    M. Ehn, J. A. Thornton, E. Kleist, M. Sipila, H. Junninen, I. Pullinen, M. Springer, F. Rubach, R. Tillmann, B. Lee, F. Lopez-Hilfiker, S. Andres, I. H. Acir, M. Rissanen, T. Jokinen, S. Schobesberger, J. Kangasluoma, J. Kontkanen, T. Nieminen, T. Kurten, L. B. Nielsen, S. Jorgensen, H. G. Kjaergaard, M. Canagaratna, M. Dal Maso, T. Berndt, T. Petaja, A. Wahner, V. M. Kerminen, M. Kulmala, D. R. Worsnop, J. Wildt, and T. F. Mentel, Nature 506, 476 (2014). doi: 10.1038/nature13032
    [3]
    B. Noziere, M. Kaberer, M. Claeys, J. Allan, B. D'Anna, S. Decesari, E. Finessi, M. Glasius, I. Grgic, J. F. Hamilton, T. Hoffmann, Y. Iinuma, M. Jaoui, A. Kahno, C. J. Kampf, I. Kourtchev, W. Maenhaut, N. Marsden, S. Saarikoski, J. Schnelle-Kreis, J. D. Surratt, S. Szidat, R. Szmigielski, and A. Wisthaler, Chem. Rev. 115, 3919 (2015). doi: 10.1021/cr5003485
    [4]
    A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmerman, J. Geophys. Res. Atmos. 100, 8873 (1995). doi: 10.1029/94JD02950
    [5]
    R. J. Griffin, D. R. Cocker, J. H. Seinfeld, and D. Dabdub, Geophys. Res. Lett. 26, 2721 (1999). doi: 10.1029/1999GL900476
    [6]
    M. Jang and R. M. Kamens, Atmos. Environ. 33, 459 (1999). doi: 10.1016/S1352-2310(98)00222-2
    [7]
    M. Jaoui and R. M. Kamens, Atmos. Environ. 37, 1835 (2003). doi: 10.1016/S1352-2310(03)00033-5
    [8]
    Y. Iinuma, O. Boge, T. Gnauk, and H. Herrmann, Atmos. Environ. 38, 761 (2004). doi: 10.1016/j.atmosenv.2003.10.015
    [9]
    Y. Yu, M. J. Ezell, A. Zelenyuk, D. Imre, L. Alexander, J. Ortega, B. D'Anna, C. W. Harmon, S. N. Johnson, and B. J. Finlayson-Pitts, Atmos. Environ. 42, 5044 (2008). doi: 10.1016/j.atmosenv.2008.02.026
    [10]
    X. Zhang, R. C. McVay, D. D. Huang, N. F. Dalleska, B. Aumont, R. C. Flagan, and J. H. Seinfeld, Proc. Natl. Acad. Sci. USA 112, 14168 (2015). doi: 10.1073/pnas.1517742112
    [11]
    A. Bagchi, Y. Yu, J. H. Huang, C. C. Tsai, W. P. Hu, and C. C. Wang, Phys. Chem. Chem. Phys. 22, 6528 (2020). doi: 10.1039/C9CP06306D
    [12]
    M. E. Jenkin, D. E. Shallcross, and J. N. Harvey, Atmos. Environ. 34, 2837 (2000). doi: 10.1016/S1352-2310(00)00087-X
    [13]
    M. Claeys, Y. Iinuma, R. Szmigielski, J. D. Surratt, F. Blockhuys, C. Van Alsenoy, O. Boege, B. Sierau, Y. Gomez-Gonzalez, R. Vermeylen, P. Van der Veken, M. Shahgholi, A. W. H. Chan, H. Herrmann, J. H. Seinfeld, and W. Maenhaut, Environ. Sci. Technol. 43, 6976 (2009). doi: 10.1021/es9007596
    [14]
    L. Mueller, M. C. Reinnig, J. Warnke, and T. Hoffmann, Atmos. Chem. Phys. 8, 1423 (2008). doi: 10.5194/acp-8-1423-2008
    [15]
    F. Yasmeen, R. Vermeylen, R. Szmigielski, Y. Iinuma, O. Boege, H. Herrmann, W. Maenhaut, and M. Claeys, Atmos. Chem. Phys. 10, 9383 (2010). doi: 10.5194/acp-10-9383-2010
    [16]
    K. Kristensen, T. Cui, H. Zhang, A. Gold, M. Glasius, and J. D. Surratt, Atmos. Chem. Phys. 14, 4201 (2014). doi: 10.5194/acp-14-4201-2014
    [17]
    W. A. Hall and M. V. Johnston, Aerosol Sci. Technol. 45, 37 (2011). doi: 10.1080/02786826.2010.517580
    [18]
    G. Li, C. Wang, Q. Li, H. Zheng, T. Wang, Y. Yu, M. Su, D. Yang, L. Shi, J. Yang, Z. He, H. Xie, H. Fan, W. Zhang, D. Dai, G. Wu, X. Yang, and L. Jiang, Rev. Sci. Instrum. 91, 034103 (2020). doi: 10.1063/1.5141897
    [19]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A. 02, (2009).
    [20]
    J. Z. Yu, R. C. Flagan, and J. H. Seinfeld, Environ. Sci. Technol. 32, 2357 (1998). doi: 10.1021/es980129x
    [21]
    M. C. Reinnig, J. Warnke, and T. Hoffmann, Rapid Commun. Mass Spectrom. 23, 1735 (2009). doi: 10.1002/rcm.4065
    [22]
    K. Kristensen, L. N. Jensen, M. Glasius, and M. Bilde, Environ. Sci. : Processes Impacts 19, 1220 (2017). doi: 10.1039/C7EM00231A
    [23]
    P. D. Lightfoot, R. A. Cox, J. N. Crowley, M. Destriau, G. D. Hayman, M. E. Jenkin, G. K. Moortgat, and F. Zabel, Atmos. Environ. A 26, 1805 (1992). doi: 10.1016/0960-1686(92)90423-I
    [24]
    H. Levy, Science 173, 141 (1971). doi: 10.1126/science.173.3992.141
    [25]
    P. Crutzen, Pure Appl. Geophys. 106, 1385 (1973).
    [26]
    L. Jia and Y. Xu, Sci. Total Environ. 738, 139831 (2020). doi: 10.1016/j.scitotenv.2020.139831
    [27]
    J. Z. Yu, D. R. Cocker, R. J. Griffin, R. C. Flagan, and J. H. Seinfeld, J. Atmos. Chem. 34, 207 (1999). doi: 10.1023/A:1006254930583
    [28]
    C. M. Kenseth, N. J. Hafeman, Y. Huang, N. F. Dalleska, B. M. Stoltz, and J. H. Seinfeld, Environ. Sci. Technol. 54, 12829 (2020). doi: 10.1021/acs.est.0c01566
    [29]
    Z. Zhao, W. Zhang, T. Alexander, X. Zhang, D. B. C. Martin, and H. Zhang, Environ. Sci. Technol. 55, 6700 (2021). doi: 10.1021/acs.est.1c02107
    [30]
    P. Saxena and L. M. Hildemann, J. Atmos. Chem. 24, 57 (1996). doi: 10.1007/BF00053823
    [31]
    R. Zhang, A. Khalizov, L. Wang, M. Hu, and W. Xu, Chem. Rev. 112, 1957 (2012). doi: 10.1021/cr2001756
    [32]
    M. Kulmala, J. Kontkanen, H. Junninen, K. Lehtipalo, H. E. Manninen, T. Nieminen, T. Petaja, M. Sipila, S. Schobesberger, P. Rantala, A. Franchin, T. Jokinen, E. Jarvinen, M. Aijala, J. Kangasluoma, J. Hakala, P. P. Aalto, P. Paasonen, J. Mikkila, J. Vanhanen, J. Aalto, H. Hakola, U. Makkonen, T. Ruuskanen, R. L. Mauldin, III, J. Duplissy, H. Vehkamaki, J. Back, A. Kortelainen, I. Riipinen, T. Kurten, M. V. Johnston, J. N. Smith, M. Ehn, T. F. Mentel, K. E. J. Lehtinen, A. Laaksonen, V. M. Kerminen, and D. R. Worsnop, Science 339, 943 (2013). doi: 10.1126/science.1227385
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (395) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return