Volume 34 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Pei-lin Kang, Cheng Shang, Zhi-pan Liu. Recent Implementations in LASP 3.0: Global Neural Network Potential with Multiple Elements and Better Long-Range Description†[J]. Chinese Journal of Chemical Physics , 2021, 34(5): 583-590. doi: 10.1063/1674-0068/cjcp2108145
Citation: Pei-lin Kang, Cheng Shang, Zhi-pan Liu. Recent Implementations in LASP 3.0: Global Neural Network Potential with Multiple Elements and Better Long-Range Description[J]. Chinese Journal of Chemical Physics , 2021, 34(5): 583-590. doi: 10.1063/1674-0068/cjcp2108145

Recent Implementations in LASP 3.0: Global Neural Network Potential with Multiple Elements and Better Long-Range Description

doi: 10.1063/1674-0068/cjcp2108145
More Information
  • LASP (large-scale atomistic simulation with neural network potential) software developed by our group since 2018 is a powerful platform (www.lasphub.com) for performing atomic simulation of complex materials. The software integrates the neural network (NN) potential technique with the global potential energy surface exploration method, and thus can be utilized widely for structure prediction and reaction mechanism exploration. Here we introduce our recent update on the LASP program version 3.0, focusing on the new functionalities including the advanced neural network training based on the multi-network framework, the newly-introduced $ S^7 $ and $ S^8 $ power type structure descriptor (PTSD). These new functionalities are designed to further improve the accuracy of potentials and accelerate the neural network training for multiple-element systems. Taking Cu$ - $C$ - $H$ - $O neural network potential and a heterogeneous catalytic model as the example, we show that these new functionalities can accelerate the training of multi-element neural network potential by using the existing single-network potential as the input. The obtained double-network potential CuCHO is robust in simulation and the introduction of $ S^7 $ and $ S^8 $ PTSDs can reduce the root-mean-square errors of energy by a factor of two.

     

  • Part of special topic of "the Young Scientist Forum on Chemical Physics: Theoretical and Computational Chemistry Workshop 2020".
  • loading
  • [1]
    A. P. Bartók and G. Csányi, Int. J. Quantum Chem. 115, 1051 (2015). doi: 10.1002/qua.24927
    [2]
    H. Wang, L. Zhang, J. Han, and W. E, Comput. Phys. Commun. 228, 178 (2018). doi: 10.1016/j.cpc.2018.03.016
    [3]
    K. T. Schütt, H. E. Sauceda, P. J. Kindermans, A. Tkatchenko, and K. R. Müller, J. Chem. Phys. 148, 241722 (2018). doi: 10.1063/1.5019779
    [4]
    J. S. Smith, O. Isayev, and A. E. Roitberg, Chem. Sci. 8, 3192 (2017). doi: 10.1039/C6SC05720A
    [5]
    A. Khorshidi and A. A. Peterson, Comput. Phys. Commun. 207, 310 (2016). doi: 10.1016/j.cpc.2016.05.010
    [6]
    F. A. Faber, A. S. Christensen, B. Huang, and O. A. v. Lilienfeld, J. Chem. Phys. 148, 241717 (2018). doi: 10.1063/1.5020710
    [7]
    S. D. Huang, C. Shang, P. L. Kang, X. J. Zhang, and Z. P. Liu, WIREs Comput. Mol. Sci. 9, e1415 (2019).
    [8]
    S. D. Huang, C. Shang, X. J. Zhang, and Z. P. Liu, Chem. Sci. 8, 6327 (2017). doi: 10.1039/C7SC01459G
    [9]
    S. Ma, C. Shang, C. M. Wang, and Z. P. Liu, Chem. Sci. 11, 10113 (2020). doi: 10.1039/D0SC03918G
    [10]
    Y. Zhu, J. He, C. Shang, X. Miao, J. Huang, Z. Liu, H. Chen, and Y. Han, J. Am. Chem. Soc. 136, 12746 (2014). doi: 10.1021/ja506554j
    [11]
    X. T. Li, L. Chen, C. Shang, and Z. P. Liu, J. Am. Chem. Soc. 143, 6281 (2021). doi: 10.1021/jacs.1c02471
    [12]
    J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007). doi: 10.1103/PhysRevLett.98.146401
    [13]
    Y. Zhang, C. Hu, and B. Jiang, J. Phys. Chem. Lett. 10, 4962 (2019). doi: 10.1021/acs.jpclett.9b02037
    [14]
    S. D. Huang, C. Shang, P. L. Kang, and Z. P. Liu, Chem. Sci. 9, 8644 (2018). doi: 10.1039/C8SC03427C
    [15]
    C. Shang, S. D. Huang, and Z. P. Liu, J. Comput. Chem. 40, 1091 (2019). doi: 10.1002/jcc.25636
    [16]
    X. Xie, K. A. Persson, and D. W. Small, J. Chem. Theory Comput. 16, 4256 (2020). doi: 10.1021/acs.jctc.0c00217
    [17]
    T. W. Ko, J. A. Finkler, and S. Goedecker, J. Behler, Acc. Chem. Res. 54, 808 (2021). doi: 10.1021/acs.accounts.0c00689
    [18]
    LASP Software. www.lasphub.com
    [19]
    C. Shang, X. J. Zhang, and Z. P. Liu, Phys. Chem. Chem. Phys. 16, 17845 (2014). doi: 10.1039/C4CP01485E
    [20]
    C. Shang and Z. P. Liu, J. Chem. Theory Comput. 9, 1838 (2013). doi: 10.1021/ct301010b
    [21]
    C. Shang and Z. P. Liu, J. Chem. Theory Comput. 6, 1136 (2010). doi: 10.1021/ct9005147
    [22]
    X. J. Zhang, C. Shang, and Z. P. Liu, J. Chem. Theory Comput. 9, 5745 (2013). doi: 10.1021/ct4008475
    [23]
    D. Frenkel and B. Smit, In Understanding Molecular Simulation (Second Edition), D. Frenkel and B. Smit, Eds., San Diego: Academic Press, 139 (2002).
    [24]
    N. Shuichi, Prog. Theor. Phys. Suppl. 103, 1 (1991). doi: 10.1143/PTPS.103.1
    [25]
    M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980). doi: 10.1103/PhysRevLett.45.1196
    [26]
    T. D. Kühne, M. Iannuzzi, M. D. Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. G. Holmberg, K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, and J. Hutter, J. Chem. Phys. 152, 194103 (2020). doi: 10.1063/5.0007045
    [27]
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys: Condens Matter. 21, 395502 (2009). doi: 10.1088/0953-8984/21/39/395502
    [28]
    Y. Zhang, C. Hu, and B. Jiang, Phys. Chem. Chem. Phys. 23, 1815 (2021). doi: 10.1039/D0CP05089J
    [29]
    B. N. Zope, D. D. Hibbitts, M. Neurock, and R. J. Davis, Science 330, 74 (2010). doi: 10.1126/science.1195055
    [30]
    C. H. C. Zhou, J. N. Beltramini, Y. X. Fan, and G. Q. M. Lu, Chem. Soc. Rev. 37, 527 (2008). doi: 10.1039/B707343G
    [31]
    J. ten Dam and U. Hanefeld, Chemsuschem 4, 1017 (2011). doi: 10.1002/cssc.201100162
    [32]
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    [33]
    G. Kresse and J. Furthmller, Phys. Rev B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1012) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return