Volume 34 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Jia-jun Ren, Yuan-heng Wang, Wei-tang Li, Tong Jiang, Zhi-gang Shuai. Time-Dependent Density Matrix Renormalization Group Coupled with n-Mode Representation Potentials for the Excited State Radiationless Decay Rate: Formalism and Application to Azulene†[J]. Chinese Journal of Chemical Physics , 2021, 34(5): 565-582. doi: 10.1063/1674-0068/cjcp2108138
Citation: Jia-jun Ren, Yuan-heng Wang, Wei-tang Li, Tong Jiang, Zhi-gang Shuai. Time-Dependent Density Matrix Renormalization Group Coupled with n-Mode Representation Potentials for the Excited State Radiationless Decay Rate: Formalism and Application to Azulene[J]. Chinese Journal of Chemical Physics , 2021, 34(5): 565-582. doi: 10.1063/1674-0068/cjcp2108138

Time-Dependent Density Matrix Renormalization Group Coupled with n-Mode Representation Potentials for the Excited State Radiationless Decay Rate: Formalism and Application to Azulene

doi: 10.1063/1674-0068/cjcp2108138
More Information
  • Corresponding author: Zhi-gang Shuai, E-mail: zgshuai@tsinghua.edu.cn
  • Received Date: 2021-08-15
  • Accepted Date: 2021-09-29
  • Publish Date: 2021-10-27
  • We propose a method for calculating the nonradiative decay rates for polyatomic molecules including anharmonic effects of the potential energy surface (PES) in the Franck-Condon region. The method combines the n-mode representation method to construct the ab initio PES and the nearly exact time-dependent density matrix renormalization group method (TD-DMRG) to simulate quantum dynamics. In addition, in the framework of TD-DMRG, we further develop an algorithm to calculate the final-state-resolved rate coefficient which is very useful to analyze the contribution from each vibrational mode to the transition process. We use this method to study the internal conversion (IC) process of azulene after taking into account the anharmonicity of the ground state PES. The results show that even for this semi-rigid molecule, the intramode anharmonicity enhances the IC rate significantly, and after considering the two-mode coupling effect, the rate increases even further. The reason is that the anharmonicity enables the C-H vibrations to receive electronic energy while C-H vibrations do not contribute on the harmonic PES as the Huang-Rhys factor is close to 0.


  • Part of special topic of "the Young Scientist Forum on Chemical Physics: Theoretical and Computational Chemistry Workshop 2020".
  • loading
  • [1]
    N. J. Turro, Modern Molecular Photochemistry, University Science Books (1991).
    C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987). doi: 10.1063/1.98799
    Z. Shuai and Q. Peng, Natl. Sci. Rev. 4, 224 (2017). doi: 10.1093/nsr/nww024
    T. R. Nelson, A. J. White, J. A. Bjorgaard, A. E. Sifain, Y. Zhang, B. Nebgen, S. Fernandez-Alberti, D. Mozyrsky, A. E. Roitberg, and S. Tretiak, Chem. Rev. 120, 2215 (2020). doi: 10.1021/acs.chemrev.9b00447
    M. H. Beck, A. Jäckle, G. A. Worth, and H. D. Meyer, Phys. Rep. 324, 1 (2000). doi: 10.1016/S0370-1573(99)00047-2
    S. M. Greene and V. S. Batista, J. Chem. Theory Comput. 13, 4034 (2017). doi: 10.1021/acs.jctc.7b00608
    Y. Yao, K. W. Sun, Z. Luo, and H. Ma, J. Phys. Chem. Lett. 9, 413 (2018). doi: 10.1021/acs.jpclett.7b03224
    J. Zheng, J. Peng, Y. Xie, Y. Long, X. Ning, and Z. Lan, Phys. Chem. Chem. Phys. 22, 18192 (2020). doi: 10.1039/D0CP00648C
    X. Gao, Y. Lai, and E. Geva, J. Chem. Theory Comput. 16, 6465 (2020). doi: 10.1021/acs.jctc.0c00709
    X. Gao, Q. Peng, Y. Niu, D. Wang, and Z. Shuai, Phys. Chem. Chem. Phys. 14, 14207 (2012). doi: 10.1039/c2cp40347a
    G. Cui and W. Thiel, J. Chem. Phys. 141, 124101 (2014). doi: 10.1063/1.4894849
    W. Zhou, A. Mandal, and P. Huo, J. Phys. Chem. Lett. 10, 7062 (2019). doi: 10.1021/acs.jpclett.9b02747
    D. Hu, Y. Xie, J. Peng, and Z. Lan, J. Chem. Theory Comput. 17, 3267 (2021). doi: 10.1021/acs.jctc.0c01249
    R. Crespo-Otero and M. Barbatti, Chem. Rev. 118, 7026 (2018). doi: 10.1021/acs.chemrev.7b00577
    G. W. Robinson and R. Frosch, J. Chem. Phys. 38, 1187 (1963). doi: 10.1063/1.1733823
    S. H. Lin, J. Chem. Phys. 44, 3759 (1966). doi: 10.1063/1.1726531
    R. Englman and J. Jortner, Mol. Phys. 18, 145 (1970). doi: 10.1080/00268977000100171
    M. Hayashi, A. Mebel, K. Liang, and S. Lin, J. Chem. Phys. 108, 2044 (1998). doi: 10.1063/1.475584
    A. Mebel, M. Hayashi, K. Liang, and S. Lin, J. Phys. Chem. A 103, 10674 (1999). doi: 10.1021/jp992429m
    Q. Peng, Y. Yi, Z. Shuai, and J. Shao, J. Chem. Phys. 126, 114302 (2007). doi: 10.1063/1.2710274
    Q. Peng, Y. Yi, Z. Shuai, and J. Shao, J. Am. Chem. Soc. 129, 9333 (2007). doi: 10.1021/ja067946e
    Y. Niu, Q. Peng, and Z. Shuai, Sci. China Ser. B 51, 1153 (2008). doi: 10.1007/s11426-008-0130-4
    Y. Niu, Q. Peng, C. Deng, X. Gao, and Z. Shuai, J. Phys. Chem. A 114, 7817 (2010).
    Z. Shuai, Chin. J. Chem. 38, 1223 (2020). doi: 10.1002/cjoc.202000226
    C. Zhu, K. K. Liang, M. Hayashi, and S. H. Lin, Chem. Phys. 358, 137 (2009). doi: 10.1016/j.chemphys.2009.01.006
    R. Ianconescu and E. Pollak, J. Chem. Phys. 134, 234305 (2011). doi: 10.1063/1.3599053
    R. Ianconescu, J. Tatchen, and E. Pollak, J. Chem. Phys. 139, 154311 (2013). doi: 10.1063/1.4825040
    A. Humeniuk, M. Buzancic, J. Hoche, J. Cerezo, R. Mitric, F. Santoro, and V. Bonacic-Koutecky, J. Chem. Phys. 152, 054107 (2020). doi: 10.1063/1.5143212
    R. Valiev, R. Nasibullin, V. Cherepanov, G. V. Baryshnikov, D. Sundholm, H. Ågren, B. F. Minaev, and T. Kurtén, Phys. Chem. Chem. Phys. 22, 22314 (2020). doi: 10.1039/D0CP03231J
    Y. Wang, J. Ren, and Z. Shuai, J. Chem. Phys. 154, 214109 (2021). doi: 10.1063/5.0052804
    V. Barone, J. Chem. Phys. 122, 014108 (2005). doi: 10.1063/1.1824881
    V. Barone, M. Biczysko, J. Bloino, M. Borkowska-Panek, I. Carnimeo, and P. Panek, Int. J. Quantum Chem. 112, 2185 (2012). doi: 10.1002/qua.23224
    G. Li, C. Rosenthal, and H. Rabitz, J. Phys. Chem. A 105, 7765 (2001). doi: 10.1021/jp010450t
    J. M. Bowman, S. Carter, and X. Huang, Int. Rev. Phys. Chem. 22, 533 (2003). doi: 10.1080/0144235031000124163
    J. Behler, Phys. Chem. Chem. Phys. 13, 17930 (2011). doi: 10.1039/c1cp21668f
    L. Zhang, J. Han, H. Wang, R. Car, and E. Weinan, Phys. Rev. Lett. 120, 143001 (2018). doi: 10.1103/PhysRevLett.120.143001
    H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003). doi: 10.1063/1.1580111
    C. Eckart, Phys. Rev. 47, 552 (1935). doi: 10.1103/PhysRev.47.552
    J. R. Reimers, J. Chem. Phys. 115, 9103 (2001). doi: 10.1063/1.1412875
    A. Baiardi, J. Bloino, and V. Barone, J. Chem. Theory Comput. 11, 3267 (2015). doi: 10.1021/acs.jctc.5b00241
    A. Jäckle and H. D. Meyer, J. Chem. Phys. 104, 7974 (1996). doi: 10.1063/1.471513
    U. Schollwöck, Ann. Phys. 326, 96 (2011). doi: 10.1016/j.aop.2010.09.012
    J. Ren, W. Li, T. Jiang, and Z. Shuai, J. Chem. Phys. 153, 084118 (2020). doi: 10.1063/5.0018149
    S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U. Schollwöck, and C. Hubig, Ann. Phys. 411, 167998 (2019). doi: 10.1016/j.aop.2019.167998
    J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete, Phys. Rev. B 94, 165116 (2016). doi: 10.1103/PhysRevB.94.165116
    W. Li, J. Ren, and Z. Shuai, J. Chem. Phys. 152, 024127 (2020). doi: 10.1063/1.5135363
    S. R. White, Phys. Rev. B 48, 10345 (1993). doi: 10.1103/PhysRevB.48.10345
    M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205 (2004). doi: 10.1103/PhysRevLett.93.207205
    A. E. Feiguin and S. R. White, Phys. Rev. B 72, 220401 (2005). doi: 10.1103/PhysRevB.72.220401
    S. Carter, S. J. Culik, and J. M. Bowman, J. Chem. Phys. 107, 10458 (1997). doi: 10.1063/1.474210
    K. Boguslawski, K. H. Marti, and M. Reiher, J. Chem. Phys. 134, 224101 (2011). doi: 10.1063/1.3596482
    Z. Luo, Y. Ma, C. Liu, and H. Ma, J. Chem. Theory Comput. 13, 4699 (2017). doi: 10.1021/acs.jctc.7b00439
    M. Beer and H. Longuet-Higgins, J. Chem. Phys. 23, 1390 (1955). doi: 10.1063/1.1742314
    T. Itoh, Chem. Rev. 112, 4541 (2012). doi: 10.1021/cr200166m
    E. W. G. Diau, S. De Feyter, and A. H. Zewail, J. Chem. Phys. 110, 9785 (1999). doi: 10.1063/1.478031
    R. P. Steer, J. Photochem. Photobiol. C: Photochem. Rev. 40, 68 (2019). doi: 10.1016/j.jphotochemrev.2019.06.002
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16 Revision C. 01, Wallingford CT: Gaussian Inc., (2016).
    Y. Niu, W. Li, Q. Peng, H. Geng, Y. Yi, L. Wang, G. Nan, D. Wang, and Z. Shuai, Mol. Phys. 116, 1078 (2018). doi: 10.1080/00268976.2017.1402966
    Y. Jiang, Q. Peng, X. Gao, Z. Shuai, Y. Niu, and S. H. Lin, J. Mater. Chem. 22, 4491 (2012). doi: 10.1039/c1jm14956c
    M. Sparta, D. Toffoli, and O. Christiansen, Theor. Chim. Acta 123, 413 (2009). doi: 10.1007/s00214-009-0532-1
    W. Siebrand, J. Chem. Phys. 44, 4055 (1966). doi: 10.1063/1.1726576
    C. A. Hutchison Jr. and B. W. Mangum, J. Chem. Phys. 32, 1261 (1960).
    R. Kellogg and R. Schwenker, J. Chem. Phys. 41, 2860 (1964). doi: 10.1063/1.1726366
    S. H. Lin and R. Bersohn, J. Chem. Phys. 48, 2732 (1968). doi: 10.1063/1.1669507
    M. J. Bearpark, F. Bernardi, S. Clifford, M. Olivucci, M. A. Robb, B. R. Smith, and T. Vreven, J. Am. Chem. Soc. 118, 169 (1996). doi: 10.1021/ja9514555
    A. Wurzer, T. Wilhelm, J. Piel, and E. Riedle, Chem. Phys. Lett. 299, 296 (1999). doi: 10.1016/S0009-2614(98)01288-3
    Q. Ou, Q. Peng, and Z. Shuai, J. Phys. Chem. Lett. 11, 7790 (2020). doi: 10.1021/acs.jpclett.0c02054
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (197) PDF downloads(34) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint