Volume 34 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Yan-jun Xu, He-yuan Liu, Hai-long Chen. Direct Observation of Electron-Vibration Coupling at MXene-Solvent Interface†[J]. Chinese Journal of Chemical Physics , 2021, 34(5): 605-612. doi: 10.1063/1674-0068/cjcp2108135
Citation: Yan-jun Xu, He-yuan Liu, Hai-long Chen. Direct Observation of Electron-Vibration Coupling at MXene-Solvent Interface[J]. Chinese Journal of Chemical Physics , 2021, 34(5): 605-612. doi: 10.1063/1674-0068/cjcp2108135

Direct Observation of Electron-Vibration Coupling at MXene-Solvent Interface

doi: 10.1063/1674-0068/cjcp2108135
More Information
  • Corresponding author: Hai-long Chen, E-mail: hlchen@iphy.ac.cn
  • Received Date: 2021-08-14
  • Accepted Date: 2021-09-07
  • Publish Date: 2021-10-27
  • MXenes, a new family of two-dimensional (2D) materials, have received extensive interest due to their fascinating physicochemical properties, such as outstanding light-to-heat conversion efficiency. However, the photothermal conversion mechanism of MXenes is still poorly understood. Here, by using femtosecond visible and mid-infrared transient absorption spectroscopy, the electronic energy dissipation dynamics of MXene (Ti3C2Tx) nanosheets dispersed in various solvents are carefully studied. Our results indicate that the lifetime of photoexcited MXene is strongly dependent on the surrounding environment. Especially, the interfacial electron-vibration coupling between the MXene nanosheets and the adjacent solvent molecules is directly observed following the ultrafast photoexcitation of MXene. It suggests that the interfacial interactions at the MXene-solvent interface play a critical role in the ultrafast energy transport dynamics of MXene, which offers a potentially feasible route for tailoring the light conversion properties of 2D systems.


  • Part of special topic of "the Young Scientist Forum on Chemical Physics: Ultrafast Dynamics of Photoelectric Conversion Workshop 2020".
  • loading
  • [1]
    M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Adv. Mater. 23, 4248 (2011). doi: 10.1002/adma.201102306
    Q. Tang, Z. Zhou, and P. W. Shen, J. Am. Chem. Soc. 134, 16909 (2012). doi: 10.1021/ja308463r
    Y. Xie, M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, X. Yu, K. W. Nam, X. Q. Yang, A. I. Kolesnikov, and P. R. C. Kent, J. Am. Chem. Soc. 136, 6385 (2014). doi: 10.1021/ja501520b
    G. Z. Liu, J. Shen, Q. Liu, G. P. Liu, J. Xiong, J. Yang, and W. Jin, J. Membr. Sci. 548, 548 (2018). doi: 10.1016/j.memsci.2017.11.065
    P. Srimuk, J. Halim, J. Lee, Q. Z. Tao, J. Rosen, and V. Presser, ACS Sustain. Chem. Eng. 6, 3739 (2018). doi: 10.1021/acssuschemeng.7b04095
    Y. Ma, N. S. Liu, L. Y. Li, X. K. Hu, Z. G. Zou, J. B. Wang, S. J. Luo, and Y. H. Gao, Nat. Commun. 8, 1207 (2017). doi: 10.1038/s41467-017-01136-9
    Y. Guo, M. J. Zhong, Z. W. Fang, P. B. Wan, and G. H. Yu, Nano Lett. 19, 1143 (2019). doi: 10.1021/acs.nanolett.8b04514
    H. Lin, X. G. Wang, L. D. Yu, Y. Chen, and J. L. Shi, Nano Lett. 17, 384 (2017). doi: 10.1021/acs.nanolett.6b04339
    Z. Huang, X. Cui, S. Li, J. C. Wei, P. Li, Y. Wang, and C. S. Lee, Nanophotonics 9, 2233 (2020). doi: 10.1515/nanoph-2019-0571
    D. X. Xu, Z. D. Li, L. S. Li, and J. Wang, Adv. Funct. Mater. 30, 2000712 (2020). doi: 10.1002/adfm.202000712
    J. B. Li, R. Z. Qin, L. Yan, Z. Chi, Z. H. Yu, N. T. Li, M. J. Hu, H. L. Chen, and G. C. Shan, Inorg. Chem. 58, 7285 (2019). doi: 10.1021/acs.inorgchem.9b00329
    W. T. Cao, W. Feng, Y. Y. Jiang, C. Ma, Z. F. Zhou, M. G. Ma, Y. Chen, and F. Chen, Mater. Horiz. 6, 1057 (2019). doi: 10.1039/C8MH01566J
    Y. Wang, L. H. Zhou, X. S. Luo, Y. P. Zhang, J. Sun, X. A. Ning, and Y. Yuan, ChemSusChem 11, 4071 (2018). doi: 10.1002/cssc.201801808
    C. Dai, H. Lin, G. Xu, Z. Liu, R. Wu, and Y. Chen, Chem. Mater. 29, 8637 (2017). doi: 10.1021/acs.chemmater.7b02441
    R. Y. Li, L. B. Zhang, L. Shi, and P. Wang, ACS Nano 11, 3752 (2017). doi: 10.1021/acsnano.6b08415
    H. Lin, S. S. Gao, C. Dai, Y. Chen, and J. L. Shi, J. Am. Chem. Soc. 139, 16235 (2017). doi: 10.1021/jacs.7b07818
    M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, Adv. Mater. 26, 992 (2014). doi: 10.1002/adma.201304138
    B. Fu, J. X. Sun, C. Wang, C. Shang, L. Xu, J. B. Li, and H. Zhang, Small 17, 2006054 (2021). doi: 10.1002/smll.202006054
    J. B. Li, Z. Chi, R. Z. Qin, L. Yan, X. B. Lin, M. J. Hu, G. C. Shan, H. L. Chen, and Y. X. Weng, J. Phys. Chem. C 124, 10306 (2020). doi: 10.1021/acs.jpcc.0c01039
    J. B. Li, Q. Zhang, L. Yan, G. R. Wu, M. J. Hu, X. Lin, K. J. Yuan, and X. M. Yang, Adv. Mater. Interfaces 6, 1901461 (2019). doi: 10.1002/admi.201901461
    W. J. Sun, Y. Y. Zhao, X. F. Cheng, J. H. He, and J. M. Lu, ACS Appl. Mater. Interfaces. 12, 9865 (2020). doi: 10.1021/acsami.9b16979
    Q. X. Zhang, H. R. Lai, R. Z. Fan, P. Y. Ji, X. L. Fu, and H. Li, ACS Nano 15, 5249 (2021). doi: 10.1021/acsnano.0c10671
    X. C. He, G. B. Zhu, J. B. Yang, H. Chang, Q. Y. Meng, H. W. Zhao, X. Zhou, S. Yue, Z. Wang, J. Shi, L. Gu, D. H. Yan, and Y. X. Weng, Sci. Rep. 5, 17076 (2015). doi: 10.1038/srep17076
    Z. Chi, H. H. Chen, Z. Chen, and H. L. Chen, Chin. J. Chem. Phys. 33, 547 (2020). doi: 10.1063/1674-0068/cjcp2007123
    Y. Gogotsi and B. Anasori, ACS Nano. 13, 8491 (2019). doi: 10.1021/acsnano.9b06394
    S. L. Zhang, H. J. Ying, B. Yuan, R. Z. Hu, and W. Q. Han, Nano Micro. Lett. 12, 78 (2020). doi: 10.1007/s40820-020-0405-7
    J. K. El-Demellawi, S. Lopatin, J. Yin, O. F. Mohammed, and H. N. Alshareef, ACS Nano 12, 8485 (2018). doi: 10.1021/acsnano.8b04029
    Y. Yang, D. P. Ostrowski, K. Zhu, J. V. D. Lagemaat, J. M. Luther, and M. C. Beard, Nat. Photonics 10, 53 (2016). doi: 10.1038/nphoton.2015.213
    X. M. Guo, H. L. Chen, X. W. Wen, and J. R. Zheng, J. Chem. Phys. 142, 212447 (2015). doi: 10.1063/1.4921573
    H. L. Chen, H. T. Bian, J. B. Li, X. W. Wen, and J. R. Zheng, Int. Rev. Phys. Chem. 31, 469 (2012). doi: 10.1080/0144235X.2012.733116
    Z. Chi, H. H. Chen, Z. Chen, Q. Zhao, H. L. Chen, and Y. X. Weng, ACS Nano 12, 8961 (2018). doi: 10.1021/acsnano.8b02354
    Z. H. Nie, Y. L. Shi, S. C. Qin, Y. H. Wang, H. Z. Jiang, Q. J. Zheng, Y. Cui, Y. Z. Meng, F. Song, X. Wang, I. C. E. Turcu, X. R. Wang, Y. B. Xu, Y. Shi, J. Zhao, R. Zhang, and F. Q. Wang, Commun. Phys. 2, (2019).
    K. Zou, X. Hong, D. Keefer, and J. Zhu, Phys. Rev. Lett. 105, 126601 (2010). doi: 10.1103/PhysRevLett.105.126601
    C. M. Chow, H. Yu, A. M. Jones, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. D. Xu, Nano Lett. 17, 1194 (2017). doi: 10.1021/acs.nanolett.6b04944
    C. H. Jin, J. W. Kim, J. Suh, Z. W. Shi, B. Chen, X. Fan, M. Kam, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, J. Q. Wu, and F. Wang, Nat. Phys. 13, 127 (2017). doi: 10.1038/nphys3928
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (656) PDF downloads(44) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint