Volume 35 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Lei Cui, DaDi Zhang, Yuan Kong, Xiao Zheng. CO$ _{2} $ Reduction on Metal-Doped SnO$ _{2} $(110) Surface Catalysts: Manipulating the Product by Changing the Ratio of Sn:O[J]. Chinese Journal of Chemical Physics , 2022, 35(3): 413-421. doi: 10.1063/1674-0068/cjcp2104077
Citation: Lei Cui, DaDi Zhang, Yuan Kong, Xiao Zheng. CO$ _{2} $ Reduction on Metal-Doped SnO$ _{2} $(110) Surface Catalysts: Manipulating the Product by Changing the Ratio of Sn:O[J]. Chinese Journal of Chemical Physics , 2022, 35(3): 413-421. doi: 10.1063/1674-0068/cjcp2104077

CO$ _{2} $ Reduction on Metal-Doped SnO$ _{2} $(110) Surface Catalysts: Manipulating the Product by Changing the Ratio of Sn:O

doi: 10.1063/1674-0068/cjcp2104077
More Information
  • The electrocatalytic carbon dioxide reduction reaction (CO2RR) producing HCOOH and CO is one of the most promising approaches for storing renewable electricity as chemical energy in fuels. SnO2 is a good catalyst for CO2-to-HCOOH or CO2-to-CO conversion, with different crystal planes participating the catalytic process. Among them, (110) surface SnO2 is very stable and easy to synthesisze. By changing the ratio of Sn: O for SnO2(110), we have two typical SnO2 thin films: fully oxidized (stoichiometric) and partially reduced. In this work, we are concerned with different metals (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au)-doped SnO2(110) with different activity and selectivity for CO2RR. All these changes are manipulated by adjusting the ratio of Sn: O in (110) surface. The results show that stochiometric and reduced Cu/Ag doped SnO2(110) have different selectivity for CO2RR. More specifically, stochiometric Cu/Ag-doped SnO2(110) tends to generate CO(g). Meanwhile, the reduced surface tends to generate HCOOH(g). Moreover, we also considered the competitive hydrogen evolution reaction (HER). The catalysts SnO2(110) doped by Ru, Rh, Pd, Os, Ir, and Pt have high activity for HER, and others are good catalysts for CO2RR.


  • Part of Special Topic "Quantum and Classical Dynamics in Chemistry" in the 32nd Chinese Chemical Society Congress.
  • loading
  • [1]
    J. Gu, F. Héroguel, J. Luterbacher, and X. Hu, Angew. Chem. Int. Ed. 57, 29437 (2018).
    C. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, Y, G. Wang, and X. Bao, Energy Environ. Sci. 11, 1204 (2018). doi: 10.1039/C8EE00133B
    Y. Dong, Q. Zhang, Z. Tian, B. Li, W. Yan, S. Wang, K. Jiang, J. Su, C.W. Oloman, E.L. Gyenge, R. Ge, Z. Lu, X. Ji, and L. Chen, Adv. Mater. 2001300 (2020).
    L. Zhang, S. Liu, A. Li, X. Yuan, C. Hu, G. Zhang, W. Deng, K. Zang, J. Luo, Y. Zhu, M. Gu, Z.J. Zhao, and J. Gong, Angew. Chem. Int. Ed. 59, 1 (2020). doi: 10.1002/anie.201914874
    A. Zhang, R. He, H. Li, Y. Chen, T. Kong, K. Li, H. Ju, J. Zhu, W. Zhu, and J. Zeng, Angew. Chem. Int. Ed. 57, 10954 (2018). doi: 10.1002/anie.201806043
    T. Burdyny and W.A. Smith, Energy Environ. Sci. 12, 1442 (2019). doi: 10.1039/C8EE03134G
    L. Dayton, "Atmospheric carbon dioxide soars past crucial milestone" DOI: 10.1126/science.aaf5722.
    X. Yu and P.G. Pickup, J. Power Sources 182, 124 (2008). doi: 10.1016/j.jpowsour.2008.03.075
    N.M. Aslam, M.S. Masdar, S.K. Kamarudin, and W.R. W. Daud, APCBEE Procedia 3, 33 (2012). doi: 10.1016/j.apcbee.2012.06.042
    G.A. El-Nagar, K.M. Dawood, M.S. El-Deab, and B.E. Al-Andouli, Appl. Catal. B: Environ 213, 118 (2017). doi: 10.1016/j.apcatb.2017.05.006
    D. Mellmann, P. Sponholz, H. Junge, and M. Beller, Chem. Soc. Rev. 45, 3954 (2016). doi: 10.1039/C5CS00618J
    W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun A.A. Peterson, and S. Sun, J. Am. Chem. Soc. 135, 16833 (2013). doi: 10.1021/ja409445p
    W. Zhu, Y.J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, and S. Sun, J. Am. Chem. Soc. 136, 16132 (2014). doi: 10.1021/ja5095099
    M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C.T. Dinh, F. Fan, C. Cao, F.P. G. Arquer, T.S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S.O. Kelley, and E.H. Sargent, Nature 537, 382 (2016). doi: 10.1038/nature19060
    N. Hoshi, M. Kato, and Y. Hori, J. Electroanal. Chem. 440, 283 (1997). doi: 10.1016/S0022-0728(97)00447-6
    Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen, and F. Jiao, Nat. Commun. 5, 3242 (2014). doi: 10.1038/ncomms4242
    B. Jiang, X.G. Zhang, K. Jiang, D.Y. Wu, and W.B. Cai, J. Am. Chem. Soc. 140, 2880 (2018). doi: 10.1021/jacs.7b12506
    Z. Xia, M. Freeman, D. Zhang, B. Yang, L. Lei, Z. Li, and Y. Hou, ChemElectroChem 5, 253 (2018). doi: 10.1002/celc.201700935
    J. Zhang, R. Yin, Q. Shao, T. Zhu, and X. Huang, Angew. Chem. Int. Ed. 58, 5609 (2019). doi: 10.1002/anie.201900167
    Y. Hori, H. Wakebe, T. Tsukamoto, and O. Koga, Electrochim. Acta 39, 1833 (1994). doi: 10.1016/0013-4686(94)85172-7
    Z. Zhang, M. Chi, G.M. Veith, P. Zhang, D.A. Lutterman, J. Rosenthal, S.H. Overbury, S. Dai, and H. Zhu, ACS Catal. 6, 6255 (2016). doi: 10.1021/acscatal.6b01297
    K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, and T.F. Jaramillo, J. Am. Chem. Soc. 136, 14107 (2014). doi: 10.1021/ja505791r
    Q. Li, W. Zhu, J. Fu, H. Zhang, G. Wu, and S. Sun, Nano Energy 24, 1 (2016). doi: 10.1016/j.nanoen.2016.03.024
    S. Sarfraz, A.T. Garcia-Esparza, A. Jedidi, L. Cavallo, and K. Takanabe, ACS Catal. 6, 2842 (2016). doi: 10.1021/acscatal.6b00269
    Y. Song, R. Peng, D.K. Hensley, P.V. Bonnesen, L. Liang, Z. Wu, H.M. Meyer, M. Chi, C. Ma, B.G. Sumpter, and A.J. Rondinone, ChemistrySelect 1, 6055 (2016). doi: 10.1002/slct.201601169
    R. Zhang, W. Lv, and L. Lei, Appl. Surf. Sci. 356, 24 (2015). doi: 10.1016/j.apsusc.2015.08.006
    T. Shinagawa, G.O. Larrazábal, A.J. Martín, F. Krumeich, and J. Pérezramírez, ACS Catal. 8, 837 (2017).
    J. Wu, Y. Huang, W. Ye, and Y. Li, Adv. Sci. 4, 1700194 (2017). doi: 10.1002/advs.201700194
    N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, and Y. Li, Nat. Commun. 9, 1320 (2018). doi: 10.1038/s41467-018-03712-z
    K.H. Liu, H.X. Zhong, S.J. Li, Y.X. Duan, M.M. Shi, X.B. Zhang, J.M. Yan, and Q. Jiang, Prog. Mater. Sci. 92, 64 (2017).
    J. Zhang, F. Li, M. Xue, J. Li, X. Ma, L. Chen, X. Zhang, and D. Macfarlane, Angew. Chem. Int. Ed. 129, 14718 (2017). doi: 10.1002/ange.201708168
    S. Bashir, S.S. Hossain, S.U. Rahman, S. Ahmed, A. Al-Ahmed, and M.M. Hossain, J. CO2 Utilization 16, 346 (2016). doi: 10.1016/j.jcou.2016.09.002
    Y. Homma, T. Tanabe, G.V. Ramesh, R. Kodiyath, S. Ueda, Y. Sakuma, Y. Homma, A. Dakshanamoorthy, K. Ariga, and H. Abe, Phys. Chem. Chem. Phys. 18, 5932 (2016). doi: 10.1039/C5CP04714E
    G. Xu, L. Zhang, C. He, D. Ma, and Z. Lu, Sens. Actuators B Chem. 221, 717 (2015). doi: 10.1016/j.snb.2015.06.143
    [35 Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu, and J.J. Zhu, J. Am. Chem. Soc. 139, 4290 (2017). doi: 10.1021/jacs.7b00261
    Y. Chen and M.W. Kanan, J. Am. Chem. Soc. 134, 1986 (2012). doi: 10.1021/ja2108799
    D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang, G. Wang, and X. Bao, J. Am. Chem. Soc. 139, 5652 (2017). doi: 10.1021/jacs.7b00102
    W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang, and F. Jiao, J. Am. Chem. Soc. 139, 1885 (2017). doi: 10.1021/jacs.6b10435
    L. Fan, Z. Xia, M. Xu, Y. Lu, and Z. Li, Adv. Funct. Mater. 28, 1706289 (2018). doi: 10.1002/adfm.201706289
    S. Liu, J. Xiao, X.F. Lu, J. Wang, X. Wang, and X.W. D. Lou, Angew. Chem. Int. Ed. 58, 8499 (2019). doi: 10.1002/anie.201903613
    A. Rabis, D. Kramer, E. Fabbri, M. Worsdale, R. Kötz, and T.J. Schmidt, J. Phys. Chem. C 118, 11292 (2014). doi: 10.1021/jp4120139
    K. Wang, D. Liu, P. Deng, L. Liu, S. Lu, Z. Sun, Y. Ma, Y. Wang, M. Li, B.Y. Xia, C. Xiao, and S. Ding, Nano Energy 64, 103954 (2019). doi: 10.1016/j.nanoen.2019.103954
    C. Zhang, M. Zhou, Y. Zhang, W. Hao, L. Sun, E. Cao, and Z. Yang, J. Supercond. Nov. Magn 11, 32 (2019).
    Y.J. Wei, J. Liu, F.Y. Cheng, and J. Chen, J. Mater. Chem. A 7, 19651 (2019). doi: 10.1039/C9TA06817A
    W. Ju, A. Bagger, G.P. Hao, A.S. Varela, I. Sinev, V. Bon, B.R. Cuenya, S. Kaskel, J. Rossmeisl, and P. Strasser, Nat. Commun. 8, 944 (2017). doi: 10.1038/s41467-017-01035-z
    Q. Zhao, Z. Yan, C. Chen, and J. Chen, Chem. Rev. 117, 10121 (2017). doi: 10.1021/acs.chemrev.7b00051
    L. Huang, D. Chen, G. Luo, Y.R. Lu, C. Chen, Y. Zou, C.L. Dong, Y. Li, and S. Wang, Adv. Mater. 1901439 (2019).
    J. Wang, Q. Zhao, and J. Chen, Chin. J. Chem. 35, 896 (2017). doi: 10.1002/cjoc.201600744
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). doi: 10.1103/PhysRev.136.B864
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965). doi: 10.1103/PhysRev.140.A1133
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
    Q. Fu, L.C. C. Rausseo, U. Martinez, P.I. Dahl, J.M. G. Lastra, P.E. Vullum, I.H. Svenum, and T. Vegge, ACS Appl. Mater. Interfaces 7, 27782 (2015). doi: 10.1021/acsami.5b08966
    P.E. Blöchl, Phys. Rev. B 50, 169 (1994).
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    S. Grimme, S. Ehrlich, and L. Georigk, J. Comput. Chem. 32, 1456 (2011). doi: 10.1002/jcc.21759
    J. Moellmann and S. Grimme, J. Phys. Chem. C 118, 7615 (2014). doi: 10.1021/jp501237c
    A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006). doi: 10.1063/1.2404663
    A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, and J.K. Nørskov, Energy Environ. Sci. 3, 1311 (2010). doi: 10.1039/c0ee00071j
    A. Robina, E. Germań, M.E. Pronsato, A. Juan, I. Motolińová, and V. Matoliń, Vacuum 106, 86 (2014). doi: 10.1016/j.vacuum.2014.03.016
    P. Bechthold, M.E. Pronsato, and C. Pistonesi, Appl. Surf. Sci. 347, 291 (2015). doi: 10.1016/j.apsusc.2015.03.149
    V. Pallassana, M. Neurock, L.B. Hansen, B. Hammer, and J.K. Nørskov, Phys. Rev. B 60, 6146 (1999). doi: 10.1103/PhysRevB.60.6146
    H. Xin, A. Vojvodic, J. Voss, J.K. Nørskov, and A.P. Frank, Phys. Rev. B 89, 115114 (2014). doi: 10.1103/PhysRevB.89.115114
  • CJCP2104077SP.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (996) PDF downloads(141) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint