Volume 34 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Yao Wang, Yu Su, Rui-Xue Xu, Xiao Zheng, YiJing Yan. Marcus' Electron Transfer Rate Revisited via a Rice-Ramsperger-Kassel-Marcus Analogue: A Unified Formalism for Linear and Nonlinear Solvation Scenarios[J]. Chinese Journal of Chemical Physics , 2021, 34(4): 462-470. doi: 10.1063/1674-0068/cjcp2101004
Citation: Yao Wang, Yu Su, Rui-Xue Xu, Xiao Zheng, YiJing Yan. Marcus' Electron Transfer Rate Revisited via a Rice-Ramsperger-Kassel-Marcus Analogue: A Unified Formalism for Linear and Nonlinear Solvation Scenarios[J]. Chinese Journal of Chemical Physics , 2021, 34(4): 462-470. doi: 10.1063/1674-0068/cjcp2101004

Marcus' Electron Transfer Rate Revisited via a Rice-Ramsperger-Kassel-Marcus Analogue: A Unified Formalism for Linear and Nonlinear Solvation Scenarios

doi: 10.1063/1674-0068/cjcp2101004
More Information
  • Corresponding author: Wang Yao, E-mail: wy2010@ustc.edu.cn
  • Received Date: 2021-01-05
  • Accepted Date: 2021-01-26
  • Publish Date: 2021-08-27
  • In the pioneering work by R. A. Marcus, the solvation effect on electron transfer (ET) processes was investigated, giving rise to the celebrated nonadiabatic ET rate formula. In this work, on the basis of the thermodynamic solvation potentials analysis, we reexamine Marcus' formula with respect to the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Interestingly, the obtained RRKM analogue, which recovers the original Marcus' rate that is in a linear solvation scenario, is also applicable to the nonlinear solvation scenarios, where the multiple curve-crossing of solvation potentials exists. Parallelly, we revisit the corresponding Fermi's golden rule results, with some critical comments against the RRKM analogue proposed in this work. For illustration, we consider the quadratic solvation scenarios, on the basis of physically well-supported descriptors.

     

  • loading
  • [1]
    R. A. Marcus, J. Chem. Phys. 24, 966 (1956). doi: 10.1063/1.1742723
    [2]
    R. A. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964). doi: 10.1146/annurev.pc.15.100164.001103
    [3]
    H. Sumi and R. A. Marcus, J. Phys. Chem. 84, 4894 (1986). doi: 10.1063/1.449978
    [4]
    R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993). doi: 10.1103/RevModPhys.65.599
    [5]
    Q. Peng, Y. P. Yi, Z. G. Shuai, and J. S. Shao, J. Am. Chem. Soc. 129, 9333 (2007). doi: 10.1021/ja067946e
    [6]
    H. Wang and M. Thoss, J. Phys. Chem. A 111, 10369 (2007). doi: 10.1021/jp072367x
    [7]
    Y. Zhao and W. Z. Liang, Chem. Soc. Rev 41, 1075 (2012). doi: 10.1039/C1CS15207F
    [8]
    H. Zang, Y. L. Ke, Y. Zhao, and W. Z. Liang, J. Phys. Chem. C 120, 13351 (2016). doi: 10.1021/acs.jpcc.6b02943
    [9]
    Y. A. Yan, J. Chem. Phys. 150, 074106 (2019). doi: 10.1063/1.5052527
    [10]
    C. Hsieh and J. Cao, J. Chem. Phys. 148, 014104 (2018). doi: 10.1063/1.5018726
    [11]
    J. T. Hsiang and B. L. Hu, Phys. Rev. D 101, 125002 (2020). doi: 10.1103/PhysRevD.101.125002
    [12]
    J. T. Hsiang and B. L. Hu, Phys. Rev. D 101, 125003 (2020). doi: 10.1103/PhysRevD.101.125003
    [13]
    O. K. Rice and H. C. Ramsperger, J. Am. Chem. Soc. 49, 1617 (1927). doi: 10.1021/ja01406a001
    [14]
    O. K. Rice and H. C. Ramsperger, J. Am. Chem. Soc. 50, 617 (1928). doi: 10.1021/ja01390a002
    [15]
    L. S. Kassel, J. Phys. Chem. 32, 225 (1928). doi: 10.1021/j150284a007
    [16]
    L. S. Kassel, J. Phys. Chem. 32, 1065 (1928). doi: 10.1021/j150289a011
    [17]
    R. A. Marcus and O. K. Rice, J. Phys. Colloid. Chem. 55, 894 (1951). doi: 10.1021/j150489a013
    [18]
    R. A. Marcus, J. Chem. Phys. 20, 359 (1952). doi: 10.1063/1.1700424
    [19]
    K. A. Holbrook, M. Pilling, and S. Robertson, Unimolecular Reactions, 2nd Edn. Chichester, UK: Wiley, (1996).
    [20]
    M. G. Evans and M. Polanyi, Trans. Faraday Soc. 31, 875 (1935). doi: 10.1039/tf9353100875
    [21]
    H. Eyring, J. Chem. Phys. 3, 107 (1935). doi: 10.1063/1.1749604
    [22]
    H. Eyring, Chem. Rev. 17, 65 (1935). doi: 10.1021/cr60056a006
    [23]
    C. N. Hinshelwood, The Kinetics of Chemical Change in Gaseous Systems, London: Clarendon Press, (1926).
    [24]
    Y. J. Yan, J. Chem. Phys. 140, 054105 (2014). doi: 10.1063/1.4863379
    [25]
    Y. J. Yan, J. S. Jin, R. X. Xu, and X. Zheng, Frontiers Phys. 11, 110306 (2016). doi: 10.1007/s11467-016-0513-5
    [26]
    H. D. Zhang, R. X. Xu, X. Zheng, and Y. J. Yan, Mol. Phys. 116, 780 (2018). doi: 10.1080/00268976.2018.1431407
    [27]
    Y. Wang, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 152, 041102 (2020). doi: 10.1063/1.5135776
    [28]
    R. X. Xu, Y. Liu, H. D. Zhang, and Y. J. Yan, Chin. J. Chem. Phys. 30, 395 (2017). doi: 10.1063/1674-0068/30/cjcp1706123
    [29]
    R. X. Xu, Y. Liu, H. D. Zhang, and Y. J. Yan, J. Chem. Phys. 148, 114103 (2018). doi: 10.1063/1.4991779
    [30]
    Y. Liu, R. X. Xu, H. D. Zhang, and Y. J. Yan, Chin. J. Chem. Phys. 31, 245 (2018). doi: 10.1063/1674-0068/31/cjcp1804083
    [31]
    U. Weiss, Quantum Dissipative Systems, 4rd edn., Singapore: World Scientific, (2012).
    [32]
    Y. J. Yan and R. X. Xu, Annu. Rev. Phys. Chem. 56, 187 (2005). doi: 10.1146/annurev.physchem.55.091602.094425
    [33]
    G. F. Bertsch, Online note: "Derivations of Marcus's formula". https://www.int.washington.edu/users/bertsch/marcus.1.pdf
    [34]
    L. Landau, Phys. Z. Sowjetunion 2, 46 (1932).
    [35]
    C. Zener, Proc. Roy. Soc. London A 137, 696 (1932). doi: 10.1098/rspa.1932.0165
    [36]
    C. Wittig, J. Phys. Chem. B 109, 8428 (2005). doi: 10.1021/jp040627u
    [37]
    A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983). doi: 10.1016/0378-4371(83)90013-4
    [38]
    C. Zhu, J. Chem. Phys. 105, 4159 (1996). doi: 10.1063/1.472261
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (967) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return