Volume 34 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Hao Lin, Jin-xun Liu, Hong-jun Fan, Wei-xue Li. Crystallographic and Morphological Sensitivity of N2 Activation over Ruthenium[J]. Chinese Journal of Chemical Physics , 2021, 34(3): 263-272. doi: 10.1063/1674-0068/cjcp2009171
Citation: Hao Lin, Jin-xun Liu, Hong-jun Fan, Wei-xue Li. Crystallographic and Morphological Sensitivity of N2 Activation over Ruthenium[J]. Chinese Journal of Chemical Physics , 2021, 34(3): 263-272. doi: 10.1063/1674-0068/cjcp2009171

Crystallographic and Morphological Sensitivity of N2 Activation over Ruthenium

doi: 10.1063/1674-0068/cjcp2009171
More Information
  • Corresponding author: Hong-jun Fan, E-mail: fanhj@dicp.ac.cn; Wei-xue Li, E-mail: wxli70@ustc.edu.cn
  • Received Date: 2020-09-25
  • Accepted Date: 2020-11-17
  • Publish Date: 2021-06-27
  • Ruthenium (Ru) serves as a promising catalyst for ammonia synthesis via the Haber-Bosch process, identification of the structure sensitivity to improve the activity of Ru is important but not fully explored yet. We present here density functional theory calculations combined with micro-kinetic simulations on nitrogen molecule activation, a crucial step in ammonia synthesis, over a variety of hexagonal close-packed (hcp) and face-center cubic (fcc) Ru facets. Hcp $\left\{ {21\overline 3 0} \right\}$ facet exhibits the highest activity toward N$_2$ dissociation in hcp Ru, followed by the (0001) monatomic step sites. The other hcp Ru facets have N$_2$ dissociation rates at least three orders lower. Fcc $\{211\}$ facet shows the best performance for N$_2$ activation in fcc Ru, followed by $\{311\}$, which indicates stepped surfaces make great contributions to the overall reactivity. Although hcp Ru $\left\{ {21\overline 3 0} \right\}$ facet and (0001) monatomic step sites have lower or comparable activation barriers compared with fcc Ru $\{211\}$ facet, fcc Ru is proposed to be more active than hcp Ru for N$_2$ conversion due to the exposure of the more favorable active sites over step surfaces in fcc Ru. This work provides new insights into the crystal structure sensitivity of N$_2$ activation for mechanistic understanding and rational design of ammonia synthesis over Ru catalysts.


  • These authors contributed equally to this work.
  • loading
  • [1]
    J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, Nat. Geosci. 1, 636 (2008). doi: 10.1038/ngeo325
    J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider and R. R. Schrock, Science 360, eaar6611 (2018). doi: 10.1126/science.aar6611
    D. E. Brown, T. Edmonds, R. W. Joyner, J. J. McCarroll, and S. R. Tennison, Catal. Lett. 144, 545 (2014). doi: 10.1007/s10562-014-1226-4
    I. Chorkendorff and J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, Weinheim: Wiley-VCH, 301 (2003).
    N. Spencer, R. Schoonmaker, and G. Somorjai, J. Catal. 74, 129 (1982). doi: 10.1016/0021-9517(82)90016-1
    D. R. Strongin and G. A. Somorjai, J. Catal. 109, 51 (1988). doi: 10.1016/0021-9517(88)90184-4
    J. J. Mortensen, L. B. Hansen, B. Hammer, and J. K. Norskov, J. Catal. 182, 479 (1999). doi: 10.1006/jcat.1998.2364
    S. Hagen, R. Barfod, R. Fehrmann, C. J. H. Jacobsen, H. T. Teunissen, and I. Chorkendorff, J. Catal. 214, 327 (2003). doi: 10.1016/S0021-9517(02)00182-3
    T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens, and R. Schlögl, Angew. Chem. Int. Ed. 52, 12723 (2013). doi: 10.1002/anie.201305812
    G. Ertl, H. Knözinger, and J. Weitkamp, Handbook of Heterogeneous Catalysis, Weinheim: Wiley-VCH, 2965 (2008).
    K. I. Aika, H. Hori, and A. Ozaki, J. Catal. 27, 424 (1972). doi: 10.1016/0021-9517(72)90179-0
    S. Dahl, J. Sehested, C. Jacobsen, E. Törnqvist, and I. Chorkendorff, J. Catal. 192, 391 (2000). doi: 10.1006/jcat.2000.2857
    S. Dahl, E. Törnqvist, and I. Chorkendorff, J. Catal. 192, 381 (2000). doi: 10.1006/jcat.2000.2858
    N. Saadatjou, A. Jafari, and S. Sahebdelfar, Chem. Eng. Commun. 202, 420 (2015). doi: 10.1080/00986445.2014.923995
    X. Wang, J. Ni, B. Lin, R. Wang, J. Lin, and K. Wei, Catal. Commun. 12, 251 (2010). doi: 10.1016/j.catcom.2010.09.024
    Á. Logadóttir and J. K. Nørskov, J. Catal. 220, 273 (2003). doi: 10.1016/S0021-9517(03)00156-8
    H. Liu, Chin. J. Catal. 35, 1619 (2014). doi: 10.1016/S1872-2067(14)60118-2
    K. Honkala, A. Hellman, I. N. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C. H. Christensen, and J. K. Nørskov, Science 307, 555 (2005). doi: 10.1126/science.1106435
    A. Ozaki, H. S. Taylor, and M. Boudart, Proc. Math. Phys. Sci. 258, 47 (1960).
    A. Nielsen, J. Kjaer, and B. Hansen, J. Catal. 3, 68 (1964). doi: 10.1016/0021-9517(64)90094-6
    M. Boudart, Cat. Rev. 23, 1 (1981).
    K. Tamaru, Acc. Chem. Res. 21, 88 (1988). doi: 10.1021/ar00146a007
    H. Tanaka, Y. Nishibayashi, and K. Yoshizawa, Acc. Chem. Res. 49, 987 (2016). doi: 10.1021/acs.accounts.6b00033
    H. Grabke, W. Paulitschke, G. Tauber, and H. Viefhaus, Surf. Sci. 63, 377 (1977). doi: 10.1016/0039-6028(77)90353-3
    M. Grunze, M. Golze, W. Hirschwald, H. J. Freund, H. Pulm, U. Seip, M. Tsai, G. Ertl, and J. Küppers, Phys. Rev. Lett. 53, 850 (1984). doi: 10.1103/PhysRevLett.53.850
    S. Dahl, A. Logadottir, R. C. Egeberg, J. H. Larsen, I. Chorkendorff, E. Tornqvist, and J. K. Nørskov, Phys. Rev. Lett. 83, 1814 (1999). doi: 10.1103/PhysRevLett.83.1814
    C. J. H. Jacobsen, S. Dahl, P. L. Hansen, E. Törnqvist, L. Jensen, H. Topsøe, D. V. Prip, P. B. Møenshaug, and I. Chorkendorff, J. Mol. Catal. A: Chem. 163, 19 (2000). doi: 10.1016/S1381-1169(00)00396-4
    W. Raróg-Pilecka, E. Miśkiewicz, D. Szmigiel, and Z. Kowalczyk, J. Catal. 231, 11 (2005). doi: 10.1016/j.jcat.2004.12.005
    A. Hellman, K. Honkala, S. Dahl, C. H. Christensen, and J. K. Nørskov, Comprehensive Inorganic Chemistry Ⅱ (2nd Edn. ), Amsterdam: Elsevier, 459 (2013).
    R. Van Hardeveld and F. Hartog, Surf. Sci. 15, 189 (1969). doi: 10.1016/0039-6028(69)90148-4
    Y. K. Kim, G. A. Morgan, and J. T. Yates, Surf. Sci. 598, 14 (2005). doi: 10.1016/j.susc.2005.07.043
    S. Shetty and R. A. van Santen, Top. Catal. 53, 969 (2010). doi: 10.1007/s11244-010-9516-6
    C. A. Casey-Stevens, S. G. Lambie, C. Ruffman, E. Skúlason, and A. L. Garden, J. Phys. Chem. C 123, 30458 (2019). doi: 10.1021/acs.jpcc.9b09563
    S. Liang, F. Teng, G. Bulgan, R. Zong, and Y. Zhu, J. Phys. Chem. C 112, 5307 (2008). doi: 10.1021/jp0774995
    M. T. M. Koper, Nanoscale 3, 2054 (2011). doi: 10.1039/c0nr00857e
    K. Kusada, H. Kobayashi, T. Yamamoto, S. Matsumura, N. Sumi, K. Sato, K. Nagaoka, Y. Kubota, and H. Kitagawa, J. Am. Chem. Soc. 135, 5493 (2013). doi: 10.1021/ja311261s
    E. K. Abo-Hamed, T. Pennycook, Y. Vaynzof, C. Toprakcioglu, A. Koutsioubas, and O. A. Scherman, Small 10, 3145 (2014). doi: 10.1002/smll.201303507
    J. Gu, Y. Guo, Y. Y. Jiang, W. Zhu, Y. S. Xu, Z. Q. Zhao, J. X. Liu, W. X. Li, C. H. Jin, C. H. Yan, and Y. W. Zhang, J. Phys. Chem. C 119, 17697 (2015). doi: 10.1021/acs.jpcc.5b04587
    H. Ma and C. Na, ACS Catal. 5, 1726 (2015). doi: 10.1021/cs5019524
    S. I. Choi, J. A. Herron, J. Scaranto, H. Huang, Y. Wang, X. Xia, T. Lv, J. Park, H. C. Peng, M. Mavrikakis, and Y. Xia, ChemCatChem 7, 2077 (2015). doi: 10.1002/cctc.201500094
    J. X. Liu, B. Y. Zhang, P. P. Chen, H. Y. Su, and W. X. Li, J. Phys. Chem. C 120, 24895 (2016). doi: 10.1021/acs.jpcc.6b08742
    N. M. AlYami, A. P. LaGrow, K. S. Joya, J. Hwang, K. Katsiev, D. H. Anjum, Y. Losovyj, L. Sinatra, J. Y. Kim, and O. M. Bakr, Phys. Chem. Chem. Phys. 18, 16169 (2016). doi: 10.1039/C6CP01401A
    H. Ye, Q. Wang, M. Catalano, N. Lu, J. Vermeylen, M. J. Kim, Y. Liu, Y. Sun, and X. Xia, Nano Lett. 16, 2812 (2016). doi: 10.1021/acs.nanolett.6b00607
    Y. Yao, D. S. He, Y. Lin, X. Feng, X. Wang, P. Yin, X. Hong, G. Zhou, Y. Wu, and Y. Li, Angew. Chem. 128, 5591 (2016). doi: 10.1002/ange.201601016
    Z. Fan and H. Zhang, Acc. Chem. Res. 49, 2841 (2016). doi: 10.1021/acs.accounts.6b00527
    W. Z. Li, J. X. Liu, J. Gu, W. Zhou, S. Y. Yao, R. Si, Y. Guo, H. Y. Su, C. H. Yan, W. X. Li, Y. W. Zhang, and D. Ma, J. Am. Chem. Soc. 139, 2267 (2017). doi: 10.1021/jacs.6b10375
    Y. Yu, G. H. Nam, Q. He, X. J. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao, Z. Liu, F. R. Ran, X. Wang, H. Li, X. Huang, B. Li, Q. Xiong, Q. Zhang, Z. Liu, L. Gu, Y. Du, W. Huang, and H. Zhang, Nat. Chem. 10, 638 (2018). doi: 10.1038/s41557-018-0035-6
    X. Hao, R. Zhang, L. Ling, M. Fan, D. Li, and B. Wang, J. Phys. Chem. C 124, 6756 (2020). doi: 10.1021/acs.jpcc.0c00909
    M. Zhao and Y. Xia, Nat. Rev. Mater. 5, 440 (2020). doi: 10.1038/s41578-020-0183-3
    A. Y. Khodakov, Catal. Today 144, 251 (2009).
    M. Sadeqzadeh, H. Karaca, O. Safonova, P. Fongarland, S. Chambrey, P. Roussel, A. Griboval-Constant, M. Lacroix, D. Curulla-Ferré, and F. Luck, Catal. Today 164, 62 (2011). doi: 10.1016/j.cattod.2010.12.035
    D. Song, J. Li, and Q. Cai, J. Phys. Chem. C 111, 18970 (2007). doi: 10.1021/jp0751357
    O. Ducreux, J. Lynch, B. Rebours, M. Roy, and P. Chaumette, Stud. Surf. Sci. Catal. 119, 125 (1998).
    O. Ducreux, B. Rebours, J. Lynch, M. Roy-Auberger, and D. Bazin, Oil Gas Sci. Technol. 64, 49 (2009). doi: 10.2516/ogst:2008039
    J. X. Liu, H. Y. Su, D. P. Sun, B. Y. Zhang, and W. X. Li, J. Am. Chem. Soc. 135, 16284 (2013). doi: 10.1021/ja408521w
    B. Y. Zhang, P. P. Chen, J. X. Liu, H. Y. Su, and W. X. Li, J. Phys. Chem. C 123, 10956 (2019). doi: 10.1021/acs.jpcc.9b00590
    M. Zhao, L. Figueroa-Cosme, A. O. Elnabawy, M. Vara, X. Yang, L. T. Roling, M. Chi, M. Mavrikakis, and Y. Xia, Nano Lett. 16, 5310 (2016). doi: 10.1021/acs.nanolett.6b02795
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). doi: 10.1103/PhysRevB.47.558
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989). doi: 10.1103/PhysRevB.40.3616
    K. H. Hellwege, A. M. Hellwege, B. Eisenmann, and H. Schaefer, Structure Data of Elements and Intermetallic Phases, Berlin: Springer-Verlag, (1971).
    C. Song, O. Sakata, L. S. R. Kumara, S. Kohara, A. Yang, K. Kusada, H. Kobayashi, and H. Kitagawa, Sci. Rep. 6, 31400 (2016). doi: 10.1038/srep31400
    K. Sun, Y. Zhao, H. Y. Su, and W. X. Li, Theor. Chem. Acc. 131, 1118 (2012). doi: 10.1007/s00214-012-1118-x
    G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000). doi: 10.1063/1.1329672
    G. Wulff and Z. Kristallogr. Cryst. Mater. 34, 449 (1901).
    H. Lin, J. X. Liu, H. Fan, and W. X. Li, J. Phys. Chem. C 124, 11005 (2020). doi: 10.1021/acs.jpcc.0c02142
    J. X. Liu and W. X. Li, WIREs Comput. Mol. Sci. 6, 571 (2016). doi: 10.1002/wcms.1267
    P. Crawford and P. Hu, J. Phys. Chem. B 110, 24929 (2006). doi: 10.1021/jp063472u
    D. R. Stull, JANAF Thermochem. Tables. Clearinghouse, (1965).
    T. H. Rod, A. Logadottir, and J. K. Nørskov, J. Chem. Phys. 112, 5343 (2000). doi: 10.1063/1.481103
    R. Schlögl, Angew. Chem. Int. Ed. 42, 2004 (2003). doi: 10.1002/anie.200301553
    N. Ashcroft and N. Mermin, Solid State Physics, Philadelphia: Saunders College (1976).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (1059) PDF downloads(87) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint