Volume 33 Issue 3
Jul.  2020
Turn off MathJax
Article Contents
Li-juan Xiang, Ling Dai, Ke-xin Guo, Zhen-hai Wen, Su-qin Ci, Jing-hong Li. Microbial Electrolysis Cells for Hydrogen Production[J]. Chinese Journal of Chemical Physics , 2020, 33(3): 263-284. doi: 10.1063/1674-0068/cjcp2005075
Citation: Li-juan Xiang, Ling Dai, Ke-xin Guo, Zhen-hai Wen, Su-qin Ci, Jing-hong Li. Microbial Electrolysis Cells for Hydrogen Production[J]. Chinese Journal of Chemical Physics , 2020, 33(3): 263-284. doi: 10.1063/1674-0068/cjcp2005075

Microbial Electrolysis Cells for Hydrogen Production

doi: 10.1063/1674-0068/cjcp2005075
More Information
  • Microbial electrolysis cells (MECs) present an attractive route for energy-saving hydrogen (H2) production along with treatment of various wastewaters, which can convert organic matter into H2 with the assistance of microbial electrocatalysis. However, the development of such renewable technologies for H2 production still faces considerable challenges regarding how to enhance the H2 production rate and to lower the energy and the system cost. In this review, we will focus on the recent research progress of MEC for H2 production. First, we present a brief introduction of MEC technology and the operating mechanism for H2 production. Then, the electrode materials including some typical electrocatalysts for hydrogen production are summarized and discussed. We also highlight how various substrates used in MEC affect the associated performance of hydrogen generation. Finally we presents several key scientific challenges and our perspectives on how to enhance the electrochemical performance.

     

  • loading
  • [1]
    P. Choudhury, U. S. P. Uday, T. K. Bandyopadhyay, R. N. Ray, and B. Bhunia, Bioengineered 8, 471 (2017). doi: 10.1080/21655979.2016.1267883
    [2]
    Prachi, P. Gautam, D. Madathil, and A. N. B. Nair, Int. J. ChemTech Res. 5, 2303 (2013). https://www.researchgate.net/publication/287840958_Nanotechnology_in_waste_water_treatment_A_review
    [3]
    M. Rezaei, A. Mostafaeipour, M. Qolipour, and M. Momeni, Front. Energy 13, 539 (2019). doi: 10.1007/s11708-019-0635-x
    [4]
    S. M. Kotay and D. Das, Int. J. Hydrogen Energy 33, 258 (2008). doi: 10.1016/j.ijhydene.2007.07.031
    [5]
    M. Y. Azwar, M. A. Hussain, and A. K. Abdul-Wahab, Renew. Sust. Energy Rev. 31, 158 (2014). doi: 10.1016/j.rser.2013.11.022
    [6]
    C. Acar and I. Dincer, Int. J. Hydrogen Energy 39, 1 (2014). doi: 10.1016/j.ijhydene.2013.10.060
    [7]
    I. P. Jain, Int. J. Hydrogen Energy 34, 7368 (2009). doi: 10.1016/j.ijhydene.2009.05.093
    [8]
    Y. Zhang and I. Angelidaki, Water Res. 56, 11 (2014). doi: 10.1016/j.watres.2014.02.031
    [9]
    A. Kadier, P. Abdeshahian, Y. Simayi, M. Ismail, A. A. Hamid, and M. S. Kalil, Energy 90, 1556 (2015). doi: 10.1016/j.energy.2015.06.108
    [10]
    Mustakeem, Mater. Renew. Sustain. Energy 4, 22 (2015). doi: 10.1007/s40243-015-0063-8
    [11]
    D. F. Call and B. E. Logan, Environ. Sci. Technol. 42, 3401 (2008). doi: 10.1021/es8001822
    [12]
    H. Liu, S. Grot, and B. E. Logan, Environ. Sci. Technol. 39, 4317 (2005). doi: 10.1021/es050244p
    [13]
    J. Liu, H. J. Hou, X. F. Chen, G. C. Bazan, H. Kashima, and B. E. Logan, Bioelectrochemistry 106, 379 (2015). doi: 10.1016/j.bioelechem.2015.07.001
    [14]
    H. S. Lee and B. E. Rittmann, Int. J. Hydrogen Energy 35, 920 (2010). http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM18828179
    [15]
    H. M. Singh, A. K. Pathak, K. Chopra, V. V. Tyagi, S. Anand, and R. Kothari, Biofuels-UK 10, 11 (2019). doi: 10.1080/17597269.2017.1413860
    [16]
    A. Kundu, J. N. Sahu, G. Redzwan, and M. A. Hashim, Int. J. Hydrogen Energy 38, 1745 (2013). doi: 10.1016/j.ijhydene.2012.11.031
    [17]
    R. A. Rozendal, T. H. J. A. Sleutels, H. V. M. Hamelers, and C. J. N. Buisman, Water Sci. Technol. 57, 1757 (2008). doi: 10.2166/wst.2008.043
    [18]
    A. Kadier, Y. Simayi, P. Abdeshahian, N. F. Azman, K. Chandrasekhar, and M. S. Kalil, Alexandria Engineering J. 55, 427 (2016). doi: 10.1016/j.aej.2015.10.008
    [19]
    E. Zikmund, K. Y. Kim, and B. E. Logan, Int. J. Hydrogen Energy 43, 9599 (2018). doi: 10.1016/j.ijhydene.2018.04.059
    [20]
    R. A. Rozendal, H. V. M. Hamelers, R. J. Molenkamp, and C. J. N. Buisman, Water Res. 41, 1984 (2007). doi: 10.1016/j.watres.2007.01.019
    [21]
    N. Montpart, L. Rago, J. A. Baeza, and A. Guisasola, Water Res. 68, 601 (2015). doi: 10.1016/j.watres.2014.10.026
    [22]
    Y. Hou, H. Luo, G. Liu, R. Zhang, J. Li, and S. Fu, Environ. Sci. Technol. 48, 10482 (2014). doi: 10.1021/es501202e
    [23]
    A. Lasia, Int. J. Hydrogen Energy 44, 19484 (2019). doi: 10.1016/j.ijhydene.2019.05.183
    [24]
    C. G. Morales-Guio, L. A. Stern, and X. Hu, Chem. Soc. Rev. 43, 6555 (2014). doi: 10.1039/C3CS60468C
    [25]
    M. Gong, D. Y. Wang, C. C. Chen, B. J. Hwang, and H. Dai, Nano Research 9, 28 (2015). doi: 10.1007/s12274-015-0965-x
    [26]
    B. E. Logan, D. Call, S. Cheng, H. V. M. Hamelers, T. H. J. A. Sleutels, A. W. Jeremiasse, and R. A. Rozendal, Environ. Sci. Technol. 42, 8630 (2008). doi: 10.1021/es801553z
    [27]
    A. Kadier, Y. Simayi, M. S. Kalil, P. Abdeshahian, and A. A. Hamid, Renewable Energy 71, 466 (2014). doi: 10.1016/j.renene.2014.05.052
    [28]
    M. Sun, F. Zhang, Z. H. Tong, G. P. Sheng, Y. Z. Chen, Y. Zhao, Y. P. Chen, S. Y. Zhou, G. Liu, Y. C. Tian, and H. Q. Yu, Biosens. Bioelectron. 26, 338 (2010). doi: 10.1016/j.bios.2010.08.010
    [29]
    Z. S. Lv, D. H. Xie, X. J. Yue, C. H. Feng, and C. H. Wei, J. Power Sources 210, 26 (2012). doi: 10.1016/j.jpowsour.2012.02.109
    [30]
    B. E. Logan, S. Cheng, V. J. Watson, and G. Estadt, Environ. Sci. Technol. 41, 3341 (2007). doi: 10.1021/es062644y
    [31]
    D. I. Carlotta-Jones, K. Purdy, K. Kirwan, J. Stratford, and S. R. Coles, Bioresour. Technol. 304, 122983 (2020). doi: 10.1016/j.biortech.2020.122983
    [32]
    C. Dumas, A. Mollica, D. Feron, R. Basseguy, L. Etcheverry, and A. Bergel, Electrochim. Acta 53, 468 (2007). doi: 10.1016/j.electacta.2007.06.069
    [33]
    S. A. Cheng and B. E. Logan, Electrochem. Commun. 9, 492 (2007). doi: 10.1016/j.elecom.2006.10.023
    [34]
    X. Wang, S. A. Cheng, Y. J. Feng, M. D. Merrill, T. Saito, and B. E. Logan, Environ. Sci. Technol. 43, 6870 (2009). doi: 10.1021/es900997w
    [35]
    S. Freguia, K. Rabaey, Z. Yuan, and J. Keller, Electrochim. Acta 53, 598 (2007). doi: 10.1016/j.electacta.2007.07.037
    [36]
    P. A. Selembo, M. D. Merrill, and B. E. Logan, J. Power Sources 190, 271 (2009). doi: 10.1016/j.jpowsour.2008.12.144
    [37]
    J. X. Zhang, Z. Z. Zhang, Y. T. Jiao, H. X. Yang, Y. Q. Li, J. Zhang, and P. Gao, J. Power Sources 419, 99 (2019). doi: 10.1016/j.jpowsour.2019.02.059
    [38]
    S. Y. Lu, M. Jin, Y. Zhang, Y. B. Niu, J. C. Gao, and C. M. Li, Adv. Energy Mater. 8, 1702545 (2018). doi: 10.1002/aenm.201702545
    [39]
    A. K. Chaurasia, H. Goyal, and P. Mondal, Int. J. Hydrogen Energy 44, doi:10.1016/j.ijhydene.2019.07.175 (2019).
    [40]
    M. Mitov, E. Chorbadzhiyska, L. Nalbandian, and Y. Hubenova, J. Power Sources 356, 467 (2017). doi: 10.1016/j.jpowsour.2017.02.066
    [41]
    L. D. Munoz, B. Erable, L. Etcheverry, J. Riess, R. Basseguy, and A. Bergel, Electrochem. Commun. 12, 183 (2010). doi: 10.1016/j.elecom.2009.11.017
    [42]
    A. Kadier, Y. Simayi, and K. Chandrasekhar, Int. J. Hydrogen Energy 40, 14095 (2015). doi: 10.1016/j.ijhydene.2015.08.095
    [43]
    A. Kadier, M. S. Kalil, and P. Abdeshahian, Renew. Sust. Energ. Rev. 61, 501 (2016). doi: 10.1016/j.rser.2016.04.017
    [44]
    A. W. Jeremiasse, H. V. M. Hamelers, M. Saakes, and C. J. N. Buisman, Int. J. Hydrogen Energy 35, 12716 (2010). doi: 10.1016/j.ijhydene.2010.08.131
    [45]
    S. Cheng, P. Kiely, and B. E. Logan, Bioresour. Technol. 102, 367 (2011). doi: 10.1016/j.biortech.2010.05.083
    [46]
    Q. Shao, J. Li, S. Yang, and H. Sun, Water Sci. Technol. 79, 1123 (2019). doi: 10.2166/wst.2019.107
    [47]
    M. Badia-Fabregat, L. Rago, J. A. Baeza, and A. Guisasola, Int. J. Hydrogen Energy 44, 17204 (2019). doi: 10.1016/j.ijhydene.2019.03.193
    [48]
    S. Sakai and T. Yagishita, Biotechnol. Bioeng. 98, 340 (2007). doi: 10.1002/bit.21427
    [49]
    P. A. Selembo, J. M. Perez, and W. A. Lloyd, Int. J. Hydrogen Energy 34, 5373 (2009). doi: 10.1016/j.ijhydene.2009.05.002
    [50]
    A. M. Speers, J. M. Young, and G. Reguera, Environ. Sci. Technol. 48, 6350 (2014). doi: 10.1021/es500690a
    [51]
    T. Chookaew, P. Prasertsan, and Z. J. Ren, New Biotechnol. 31, 179 (2014). doi: 10.1016/j.nbt.2013.12.004
    [52]
    L. Lu, D. Xing, N. Ren, and B. E. Logan, Bioresour. Technol. 124, 68 (2012). doi: 10.1016/j.biortech.2012.08.040
    [53]
    L. Lu, D. Xing, T. Xie, N. Ren, and B. E. Logan, Biosens. Bioelectron. 25, 2690 (2010). doi: 10.1016/j.bios.2010.05.003
    [54]
    E. Lalaurette, S. Thammannagowda, and A. Mohagheghi, Int. J. Hydrogen Energy 34, 6201 (2009). doi: 10.1016/j.ijhydene.2009.05.112
    [55]
    R. Moreno, M. I. San-Martín, A. Escapa, and A. Moran, Renewable Energy 93, 442 (2016). doi: 10.1016/j.renene.2016.02.083
    [56]
    J. Ditzig, H. Liu, and B. E. Logan, Int. J. Hydrogen Energy 32, 2296 (2007). doi: 10.1016/j.ijhydene.2007.02.035
    [57]
    E. S. Heidrich, J. Dolfing, K. Scott, S. R. Edwards, C. Jones, and T. P. Curtis, Appl. Microbiol. Biotechnol. 97, 6979 (2013). doi: 10.1007/s00253-012-4456-7
    [58]
    A. Escapa, L. Gil-Carrera, V. García, and A. Morán, Bioresour. Technol. 117, 55 (2012). https://www.sciencedirect.com/science/article/abs/pii/S0960852412006840
    [59]
    R. C. Wagner, J. M. Regan, S. E. Oh, Y. Zuo, and B. E. Logan, Water Res. 43, 1480 (2009). doi: 10.1016/j.watres.2008.12.037
    [60]
    W. J. Ding, S. A. Cheng, L. L. Yu, and H. B. Huang, Chemosphere 182, 567 (2017). doi: 10.1016/j.chemosphere.2017.05.006
    [61]
    A. Tenca, R. D. Cusick, A. Schieuano, R. Oberti, and B. E. Logan, Int. J. Hydrogen Energy 38, 1859 (2013). doi: 10.1016/j.ijhydene.2012.11.103
    [62]
    K. J. Chae, M. J. Choi, K. Y. Kim, F. F. Ajayi, I. S. Chang, and I. S. Kim, Environ. Sci. Technol. 43, 9525 (2009). doi: 10.1021/es9022317
    [63]
    X. P. Zhang, S. Y. Zhu, L. Xia, C. D. A. Si, F. Qu, and F. L. Qu, Chem. Commun. 54, 1201 (2018). doi: 10.1039/C7CC07342A
    [64]
    C. Wu, Y. Yang, D. Dong, Y. Zhang, and J. Li, Small 13, (2017). https://pubmed.ncbi.nlm.nih.gov/28145620/
    [65]
    H. T. Du, X. P. Zhang, Q. Q. Tan, R. M. Kong, and F. L. Qu, Chem. Commun. 53, 12012 (2017). doi: 10.1039/C7CC07802A
    [66]
    H. T. Du, R. M. Kong, X. X. Guo, F. L. Qu, and J. H. Li, Nanoscale 10, 21617 (2018). doi: 10.1039/C8NR07891B
    [67]
    H. T. Du, L. Xia, S. Y. Zhu, F. Qu, and F. L. Qu, Chem. Commun. 54, 2894 (2018). doi: 10.1039/C7CC09445K
    [68]
    Q. Liu, J. Q. Tian, W. Cui, P. Jiang, N. Y. Cheng, A. M. Asiri, and X. P. Sun, Angew. Chem. Int. Ed. 53, 6710 (2014). doi: 10.1002/anie.201404161
    [69]
    K. Y. Kim, S. E. Habas, J. A. Schaidle, and B. E. Logan, Bioresour. Technol. 293, 122067 (2019). doi: 10.1016/j.biortech.2019.122067
    [70]
    Y. Liu, T. G. Kelly, J. G. G. Chen, and W. E. Mustain, ACS Catal. 3, 1184 (2013). doi: 10.1021/cs4001249
    [71]
    X. Zhang, C. Shi, B. B. Chen, A. N. Kuhn, D. Ma, and H. Yang, Curr. Opin. Chem. Eng. 20, 68 (2018). doi: 10.1016/j.coche.2018.02.010
    [72]
    E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, and R. E. Schaak, Angew. Chem. Int. Ed. 53, 5427 (2014). doi: 10.1002/anie.201402646
    [73]
    S. T. Hunt, T. Nimmanwudipong, and Y. Roman-Leshkov, Angew. Chem. Int. Ed. 53, 5131 (2014).
    [74]
    X. J. Fan, H. Q. Zhou, and X. Guo, ACS Nano 9, 5125 (2015). doi: 10.1021/acsnano.5b00425
    [75]
    H. L. Lin, N. Liu, Z. P. Shi, Y. L. Guo, Y. Tang, and Q. S. Gao, Adv. Funct. Mater. 26, 5590 (2016). doi: 10.1002/adfm.201600915
    [76]
    M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013). doi: 10.1038/nchem.1589
    [77]
    R. Ramesh, D. K. Nandi, T. H. Kim, T. Cheon, J. Oh, and S. H. Kim, ACS Appl. Mater. Inter. 11, 17321 (2019). doi: 10.1021/acsami.8b20437
    [78]
    H. Y. Jin, X. Liu, A. Vasileff, Y. Jiao, Y. Q. Zhao, Y. Zheng, and S. Z. Qiao, ACS Nano 12, 12761 (2018). doi: 10.1021/acsnano.8b07841
    [79]
    P. P. Mishra, J. Theerthagiri, and R. N. Panda, Adsorpt. Sci. Technol. 32, 465 (2014). doi: 10.1260/0263-6174.32.6.465
    [80]
    G. Durai, P. Kuppusami, T. Maiyalagan, M. Ahila, and P. V. Kumar, Ceram. Int. 45, 17120 (2019). doi: 10.1016/j.ceramint.2019.05.265
    [81]
    Z. B. Yang and J. H. Hao, J. Mater. Chem. C 4, 8859 (2016). doi: 10.1039/C6TC01602B
    [82]
    D. F. Call, M. D. Merrill, and B. E. Logan, Environ. Sci. Technol. 43, 2179 (2009). doi: 10.1021/es803074x
    [83]
    J. M. Olivares-Ramirez, M. L. Campos-Cornelio, J. U. Godinez, E. Borja-Arco, and R. H. Castellanos, Int. J. Hydrogen Energy 32, 3170 (2007). doi: 10.1016/j.ijhydene.2006.03.017
    [84]
    Y. M. Zhang, M. D. Merrill, and B. E. Logan, Int. J. Hydrogen Energy 35, 12020 (2010). doi: 10.1016/j.ijhydene.2010.08.064
    [85]
    H. T. Du, R. M. Kong, F. L. Qu, and L. M. Lu, Chem. Commun. 54, 10100 (2018). doi: 10.1039/C8CC06331A
    [86]
    M. J. Choi, E. Yang, H. W. Yu, I. S. Kim, S. E. Oh, and K. J. Chae, Int. J. Hydrogen Energy 44, 2258 (2019). doi: 10.1016/j.ijhydene.2018.07.020
    [87]
    L. Y. Wang, Y. W. Chen, Q. Huang, Y. Y. Feng, S. M. Zhu, and S. B. Shen, J. Chem. Technol. Biotechnol. 87, 1150 (2012). doi: 10.1002/jctb.3739
    [88]
    S. Hrapovic, M. F. Manuel, J. H. T. Luong, S. R. Guiot, and B. Tartakovsky, Int. J. Hydrogen Energy 35, 7313 (2010). doi: 10.1016/j.ijhydene.2010.04.146
    [89]
    L. Wang, W. Z. Liu, Z. W. He, Z. C. Guo, A. J. Zhou, and A. J. Wang, Int. J. Hydrogen Energy 42, 19604 (2017). doi: 10.1016/j.ijhydene.2017.06.019
    [90]
    Kyu-JungChae, M. J. Choi, J. Lee, F. F. Ajayi, and I. S. Kim, Int. J. Hydrogen Energy 33, 5184 (2008). doi: 10.1016/j.ijhydene.2008.05.013
    [91]
    H. Y. Dai, H. M. Yang, X. Liu, X. Jian, and Z. H. Liang, Fuel 174, 251 (2016). doi: 10.1016/j.fuel.2016.02.013
    [92]
    H. Y. Dai, H. M. Yang, X. Liu, X. Jian, M. M. Guo, L. L. Cao, and Z. H. Liang, Chem. J. Chin. U. 39, 351 (2018). http://www.en.cnki.com.cn/Article_en/CJFDTotal-GDXH201802023.htm
    [93]
    C. Kisielowski, Q. M. Ramasse, L. P. Hansen, M. Brorson, A. Carlsson, A. M. Molenbroek, H. Topsoe, and S. Helveg, Angew. Chem. Int. Ed. 49, 2708 (2010). doi: 10.1002/anie.200906752
    [94]
    J. C. Tokash and B. E. Logan, Int. J. Hydrogen Energy 36, 9439 (2011). doi: 10.1016/j.ijhydene.2011.05.080
    [95]
    J. Chen, J. Jia, Z. Q. Wei, G. X. Li, J. Y. Yu, L. J. Yang, T. L. Xiong, W. J. Zhou, and Q. X. Tong, Int. J. Hydrogen Energy 43, 14301 (2018). doi: 10.1016/j.ijhydene.2018.05.162
    [96]
    L. Xiao, Z. H. Wen, S. Q. Ci, J. H. Chen, and Z. He, Nano Energy 1, 751 (2012). doi: 10.1016/j.nanoen.2012.06.002
    [97]
    D. D. Liang, L. J. Zhang, W. H. He, C. Li, J. F. Liu, S. Q. Liu, H. S. Lee, and Y. J. Feng, Appl. Energ. 264, 114700 (2020). doi: 10.1016/j.apenergy.2020.114700
    [98]
    F. Li, W. Liu, Y. Sun, W. Ding, and S. Cheng, Int. J. Hydrogen Energy 42, 3641 (2017). doi: 10.1016/j.ijhydene.2016.10.163
    [99]
    H. Y. Yuan, J. Y. Li, C. Yuan, and Z. He, Chemelectrochem 1, 1828 (2014). doi: 10.1002/celc.201402150
    [100]
    M. Hasany, M. M. Mardanpour, and S. Yaghmaei, Int. J. Hydrogen Energy 41, 1477 (2016). doi: 10.1016/j.ijhydene.2015.10.097
    [101]
    R. A. Rozendal, A. W. Jeremiasse, H. V. M. Hamelers, and C. J. N. Buisman, Environ. Sci. Technol. 42, 629 (2008). doi: 10.1021/es071720+
    [102]
    A. W. Jeremiasse, E. V. M. Hamelers, and C. J. N. Buisman, Bioelectrochemistry 78, 39 (2010). doi: 10.1016/j.bioelechem.2009.05.005
    [103]
    Y. R. Chen, J. Y. Shen, L. P. Huang, Y. Z. Pan, and X. Quan, Int. J. Hydrogen Energy 41, 13368 (2016). doi: 10.1016/j.ijhydene.2016.06.200
    [104]
    Q. Fu, H. Kobayashi, Y. Kuramochi, J. Xu, T. Wakayama, H. Maeda, and K. Sato, Int. J. Hydrogen Energy 38, 15638 (2013). doi: 10.1016/j.ijhydene.2013.04.116
    [105]
    T. Jafary, W. R. W. Daud, M. Ghasemi, B. H. Kim, A. A. Carmona-Martinez, M. H. Abu Bakar, J. M. Jahim, and M. Ismail, J. Clean. Prod. 164, 1135 (2017). doi: 10.1016/j.jclepro.2017.07.033
    [106]
    Y. W. Chen, Y. Xu, L. L. Chen, P. W. Li, S. M. Zhu, and S. B. Shen, Energy 88, 377 (2015). doi: 10.1016/j.energy.2015.05.057
    [107]
    M. Kitching, R. Butler, and E. Marsili, Enzyme Microb. Tech. 96, 1 (2017). doi: 10.1016/j.enzmictec.2016.09.002
    [108]
    Z. S. Dong, Y. Zhao, L. Fan, Y. X. Wang, J. W. Wang, and K. Zhang, Int. J. Electrochem. Sci. 12, 10553 (2017).
    [109]
    T. Jafary, W. R. W. Daud, M. Ghasemi, M. H. Abu Bakar, M. Sedighi, B. H. Kim, A. A. Carmona-Martinez, J. M. Jahim, and M. Ismail, Int. J. Hydrogen Energy 44, 30524 (2019). doi: 10.1016/j.ijhydene.2018.01.010
    [110]
    E. Croese, M. A. Pereira, G. J. W. Euverink, A. J. M. Stams, and J. S. Geelhoed, Appl. Microbiol. Biotechnol. 92, 1083 (2011). doi: 10.1007/s00253-011-3583-x
    [111]
    T. Jafary, W. R. W. Daud, M. Ghasemi, B. H. Kim, A. A. Carmona-Martínez, M. H. A. Bakar, J. M. Jahim, and M. Ismail, J. Clean. Prod. 164, 1135 (2017). doi: 10.1016/j.jclepro.2017.07.033
    [112]
    E. Croese, A. W. Jeremiasse, I. P. G. Marshall, A. M. Spormann, G. J. W. Euveritik, J. S. Geelhoed, A. J. M. Stams, and C. M. Plugge, Enzyme Microb. Technol. 61-62, 67 (2014). https://www.sciencedirect.com/science/article/pii/S0141022914000921
    [113]
    H. Y. Dai, H. M. Yang, X. Liu, X. L. Song, and Z. H. Liang, Acta Metal. Sin. 32, 297 (2018).
    [114]
    S. S. Lim, B. H. Kim, D. Li, Y. J. Feng, W. R. W. Daud, K. Scott, and E. H. Yu, Front. Chem. 6, 318 (2018). doi: 10.3389/fchem.2018.00318
    [115]
    M. Su, L. L. Wei, Z. Z. Qiu, Q. B. Jia, and J. Q. Shen, Rsc Adv. 5, 32609 (2015). doi: 10.1039/C5RA02695D
    [116]
    Y. Xu, Y. Y. Jiang, Y. W. Chen, S. M. Zhu, and S. B. Shen, Water Environ. Res. 86, 649 (2014). doi: 10.2175/106143014X13975035525500
    [117]
    R. C. Wagner, D. I. Call, and B. E. Logan, Environ. Sci. Technol. 44, 6036 (2010). doi: 10.1021/es101013e
    [118]
    L. L. Wei, H. L. Han, and J. Q. Shen, Int. J. Hydrogen Energy 38, 11110 (2013). doi: 10.1016/j.ijhydene.2013.01.019
    [119]
    P. A. Selembo, M. D. Merrill, and B. E. Logan, Int. J. Hydrogen Energy 35, 428 (2010). doi: 10.1016/j.ijhydene.2009.11.014
    [120]
    G. Kyazze, A. Popov, R. Dinsdale, S. Esteves, F. Hawkes, G. Premier, and A. Guwy, Int. J. Hydrogen Energy 35, 7716 (2010). doi: 10.1016/j.ijhydene.2010.05.036
    [121]
    H. Hu, Y. Fan, and H. Liu, Int. J. Hydrogen Energy 34, 8535 (2009). doi: 10.1016/j.ijhydene.2009.08.011
    [122]
    S. Kato, K. Hashimoto, and K. Watanabe, Environ. Microbiol. 14, 1646 (2012). doi: 10.1111/j.1462-2920.2011.02611.x
    [123]
    L. Lu, N. Ren, D. Xing, and B. E. Logan, Biosens. Bioelectron. 24, 3055 (2009). doi: 10.1016/j.bios.2009.03.024
    [124]
    Y. Z. Wang, L. Zhang, T. F. Xu, and K. Ding, Int. J. Hydrogen Energy 42, 22663 (2017). doi: 10.1016/j.ijhydene.2017.07.214
    [125]
    S. Yossan, L. Xiao, P. Prasertsan, and Z. He, Int. J. Hydrogen Energy 38, 9619 (2013). doi: 10.1016/j.ijhydene.2013.05.094
    [126]
    Y. P. Liu, Y. H. Wang, B. S. Wang, and Q. Y. Chen, Int. J. Hydrogen Energy 39, 14191 (2014). doi: 10.1016/j.ijhydene.2014.02.127
    [127]
    L. Rago, J. A. Baeza, and A. Guisasola, Bioelectrochemistry 109, 57 (2016). doi: 10.1016/j.bioelechem.2016.01.003
    [128]
    X. Wang, R. Rossi, Z. F. Yan, W. L. Yang, M. A. Hickner, T. E. Mallouk, and B. E. Logan, Environ. Sci. Technol. 53, 14761 (2019). doi: 10.1021/acs.est.9b05024
    [129]
    V. Brooks, A. J. Lewis, P. Dulin, J. R. Beegle, M. Rodriguez, and A. P. Borole, Biomass Bioenergy 119, 1 (2018). doi: 10.1016/j.biombioe.2018.08.008
    [130]
    P. Belleville, F. Guillet, A. Pons, J. Deseure, G. Merlin, F. Druart, J. Ramousse, and E. Grindler, Int. J. Hydrogen Energy 43, 14867 (2018). doi: 10.1016/j.ijhydene.2018.06.080
    [131]
    A. Almatouq and A. O. Babatunde, Bioresource Technology 237, 193 (2017). doi: 10.1016/j.biortech.2017.02.043
    [132]
    H. Liu and H. Hu, Microbial Technologies in Advanced Biofuels Production, Boston, MA: 93 (2011).
    [133]
    R. A. Rozendal, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, and C. J. N. Buisman, Int. J. Hydrogen Energy 31, 1632 (2006).
    [134]
    A. Kumar, A. Siggins, K. Katuri, T. Mahony, V. O'Flaherty, P. Lens, and D. Leech, Chem. Eng. J. 230, 532 (2013). doi: 10.1016/j.cej.2013.06.044
    [135]
    J. D. Holladay, J. Hu, D. L. King, and Y. Wang, Catal. Today 139, 244 (2009). doi: 10.1016/j.cattod.2008.08.039
    [136]
    D. F. Call and B. E. Logan, Biosens. Bioelectron. 26, 4526 (2011). doi: 10.1016/j.bios.2011.05.014
    [137]
    S. Cheng and B. E. Logan, Proc. Natl. Acad. Sci. USA 104, 18871 (2007). doi: 10.1073/pnas.0706379104
    [138]
    B. Tartakovsky, M. F. Manuel, V. Neburchilov, H. Wang, and S. R. Guiot, J. Power Sources 182, 291 (2008). doi: 10.1016/j.jpowsour.2008.03.062
    [139]
    S. V. Mohan and M. L. Babu, Bioresour. Technol. 102, 8457 (2011). doi: 10.1016/j.biortech.2011.02.051
    [140]
    R. C. Tice and Y. Kim, Int. J. Hydrogen Energy 39, 3079 (2014). doi: 10.1016/j.ijhydene.2013.12.103
    [141]
    B. Zhang, Z. H. Wen, S. Q. Ci, J. H. Chen, and Z. He, RSC Adv. 4, 49161 (2014). doi: 10.1039/C4RA08555H
    [142]
    O. Sosa-Hernandez, S. C. Popat, P. Parameswaran, G. S. Aleman-Nava, C. I. Torres, G. Buitron, and R. Parra-Saldivar, Bioresour. Technol. 200, 342 (2016). doi: 10.1016/j.biortech.2015.10.053
    [143]
    H. Q. Hu, Y. Z. Fan, and H. Liu, Water Res. 42, 4172 (2008). doi: 10.1016/j.watres.2008.06.015
    [144]
    R. A. Rozendal, H. V. M. Hamelers, K. Rabaey, J. Keller, and C. J. N. Buisman, Trends Biotechnol. 26, 450 (2008). doi: 10.1016/j.tibtech.2008.04.008
    [145]
    Z. He and L. T. Angenent, Electroanalysis 18, 2009 (2006). doi: 10.1002/elan.200603628
    [146]
    T. Jafary, W. R. Wan Daud, M. Ghasemi, M. H. Abu Bakar, M. Sedighi, B. H. Kim, A. A. Carmona-Martínez, J. M. Jahim, and M. Ismail, Int. J. Hydrogen Energy 44, 30524 (2019). doi: 10.1016/j.ijhydene.2018.01.010
    [147]
    H. Feng, L. Huang, M. Wang, Y. Xu, D. Shen, N. Li, T. Chen, and K. Guo, Int. J. Hydrogen Energy 43, 17556 (2018). doi: 10.1016/j.ijhydene.2018.07.197
    [148]
    W. Cui, G. Liu, and R. Zhang, RSC Adv. 9, 30207 (2019). doi: 10.1039/C9RA05483A
    [149]
    R. D. Cusick, B. Bryan, D. S. Parker, M. D. Merrill, M. Mehanna, P. D. Kiely, G. Liu, and B. E. Logan, Bioenergy Biofuels 89, 2053 (2011).
    [150]
    K. Guo, A. Prévoteau, and K. Rabaey, J. Power Sources 356, 484 (2017). doi: 10.1016/j.jpowsour.2017.03.029
    [151]
    K. P. Katuri, M. Ali, and P. E. Saikaly, Curr. Opin. Biotechnol. 57, 101 (2019). doi: 10.1016/j.copbio.2019.03.007
    [152]
    L. L. Wan, X. J. Li, G. L. Zang, X. Wang, Y. Y. Zhang, and Q. X. Zhou, RSC Adv. 5, 82276 (2015). doi: 10.1039/C5RA16919D
    [153]
    L. Lu, N. B. Williams, J. A. Turner, P. C. Maness, J. Gu, and Z. J. Ren, Environ. Sci. Technol. 51, 13494 (2017). doi: 10.1021/acs.est.7b03644
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (245) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return