Volume 33 Issue 3
Jul.  2020
Turn off MathJax
Article Contents
Shi-hui Dong, Wang Ao-lei, Zhao Jin, Shi-jing Tan, Bing Wang. Interaction of CO and O$ _\textbf{2} $ with Supported Pt Single-Atoms on TiO$ _\textbf{2} $(110)[J]. Chinese Journal of Chemical Physics , 2020, 33(3): 349-356. doi: 10.1063/1674-0068/cjcp1911198
Citation: Shi-hui Dong, Wang Ao-lei, Zhao Jin, Shi-jing Tan, Bing Wang. Interaction of CO and O$ _\textbf{2} $ with Supported Pt Single-Atoms on TiO$ _\textbf{2} $(110)[J]. Chinese Journal of Chemical Physics , 2020, 33(3): 349-356. doi: 10.1063/1674-0068/cjcp1911198

Interaction of CO and O$ _\textbf{2} $ with Supported Pt Single-Atoms on TiO$ _\textbf{2} $(110)

doi: 10.1063/1674-0068/cjcp1911198
More Information
  • Corresponding author: Bing Wang, E-mail:bwang@ustc.edu.cn
  • Received Date: 2019-11-11
  • Accepted Date: 2019-12-26
  • Publish Date: 2020-06-27
  • In view of the high activity of Pt single atoms in the low-temperature oxidation of CO, we investigate the adsorption behavior of Pt single atoms on reduced rutile TiO$ _2 $(110) surface and their interaction with CO and O$ _2 $ molecules using scanning tunneling microscopy and density function theory calculations. Pt single atoms were prepared on the TiO$ _2 $(110) surface at 80 K, showing their preferred adsorption sites at the oxygen vacancies. We characterized the adsorption configurations of CO and O$ _2 $ molecules separately to the TiO$ _2 $-supported Pt single atom samples at 80 K. It is found that the Pt single atoms tend to capture one CO to form Pt-CO complexes, with the CO molecule bonding to the fivefold coordinated Ti (Ti$ _{5 \rm{c}} $) atom at the next nearest neighbor site. After annealing the sample from 80 K to 100 K, CO molecules may diffuse, forming another type of complexes, Pt-(CO)$ _2 $. For O$ _2 $ adsorption, each Pt single atom may also capture one O$ _2 $ molecule, forming Pt-O$ _2 $ complexes with O$ _2 $ molecule bonding to either the nearest or the next nearest neighboring Ti$ _{5 \rm{c}} $ sites. Our study provides the single-molecule-level knowledge of the interaction of CO and O$ _2 $ with Pt single atoms, which represent the important initial states of the reaction between CO and O$ _2 $.


  • loading
  • [1]
    T. Engel and G. Ertl, J. Chem. Phys. 69 1267 (1978). doi: 10.1063/1.436666
    H. J. Freund, G. Meijer, M. Scheffler, R. Schlögl, and M. Wolf, Angew. Chem. Int. Ed. 50 10064 (2011). doi: 10.1002/anie.201101378
    M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, and R. J. Behm, J. Catal. 197 113 (2001). doi: 10.1006/jcat.2000.3069
    S. H. Overbury, L. Ortiz-Soto, H. G. Zhu, B. Lee, M. D. Amiridis, and S. Dai, Catal. Lett. 95 99 (2004). doi: 10.1023/B:CATL.0000027281.96719.42
    L. Delannoy, N. El Hassan, A. Musi, N. N. Le To, J. M. Krafft, and C. Louis, J. Phys. Chem. B 110 22471 (2006). doi: 10.1021/jp062130l
    M. S. Chen and D. W. Goodman, Science 306 252 (2004). doi: 10.1126/science.1102420
    Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos. Science. 301 935 (2003). doi: 10.1126/science.1085721
    B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J. M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Science 307 403 (2005). doi: 10.1126/science.1104168
    C. Y. Peng and H. Bernhard Schlegel, Israel. J. Chem. 33 449 (1993). doi: 10.1002/ijch.199300051
    Z. Y. Li, Z. Yuan, X. N. Li, Y. X. Zhao, and S. G. He, J. Am. Chem. Soc. 136 14307 (2014). doi: 10.1021/ja508547z
    W. L. Zhang, L. R. Lou, W. Zhu, and G. Z. Wang, Chin. J. Chem. Phys. 32 521 (2019). doi: 10.1063/1674-0068/cjcp1904069
    T. Chen, G. P. Wu, Z. C. Feng, J. Y. Shi, G. J. Ma, P. L. Ying, and C. Li, Chin. J. Chem. Phys. 20 483 (2007). doi: 10.1088/1674-0068/20/04/483-488
    P. Yu, Y. F. Song, Q. H. Yuan, L. L. Wang, J. M. Li, and N. Y. Qiu. Chin. J. Chem. Phys. 18 573 (2005).
    M. Yang and H. Papp, Chin. J. Chem. Phys. 20 690 (2007). doi: 10.1088/1674-0068/20/06/690-696
    S. H. Zhong, X. T. Wang, and Y. F. Geng, Chin. J. Chem. Phys. 17 91 (2004).
    A. M. Gao, H. J. Wang, J. Tu, and Q. X. Li, Chin. J. Chem. Phys. 19 555 (2006). doi: 10.1360/cjcp2006.19(6).555.4
    M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 16 405 (1987). doi: 10.1246/cl.1987.405
    M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 155 301 (1989).
    I. X. Green, W. J. Tang, M. Neurock, and J. T. Yates, J. T. Yates Jr., Science 333 736 (2011).
    N. Li, Q. Y. Chen, L. F. Luo, W. X. Huang, M. F. Luo, G. S. Hu, and J. Q. Lu, Appl. Catal. B-Environ. 142/143 523 (2013). doi: 10.1016/j.apcatb.2013.05.068
    Y. Zhou, D. E. Doronkin, M. L. Chen, S. Q. Wei, and J. D. Grunwaldt, ACS Catal. 6 7799 (2016). doi: 10.1021/acscatal.6b01509
    K. Czupryn, I. Kocemba, and J. Rynkowski, React. Kinet. Mech. Cat. 124 187 (2018). doi: 10.1007/s11144-017-1334-4
    Y. P. G. Chua, G. T. K. K. Gunasooriya, M. Saeys, and E. G. Seebauer, J. Catal. 311 306 (2014). doi: 10.1016/j.jcat.2013.12.007
    K. Taira, K. Nakao, K. Suzuki, and H. Einaga, Environ. Sci. Technol. 50 9773 (2016). doi: 10.1021/acs.est.6b01652
    L. DeRita, S. Dai, K. Lopez-Zepeda, N. Pham, G. W. Graham, X. Q. Pan, and P. Christopher, J. Am. Chem. Soc. 139 14150 (2017). doi: 10.1021/jacs.7b07093
    B. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, and T. Zhang, Nat. Chem. 3 634 (2011). doi: 10.1038/nchem.1095
    R. Van Hardeveld and F. Hartog, Surf. Sci. 15 189 (1969).
    N. Lopez, T. V. W. Janssens, B. S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, and J. K. NØrskov, J. Catal. 223 232 (2004).
    C. T. Campbell, Nat. Chem. 4 597 (2012). doi: 10.1038/nchem.1412
    X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, and T. Zhang, Accounts. Chem. Res. 46 1740 (2013). doi: 10.1021/ar300361m
    A. Q. Wang, J. Li, and T. Zhang, Nat. Rev. Chem. 2 65 (2018).
    Y. J. Chen, S. F. Ji, C. Chen, Q. Peng, D. S. Wang, and Y. D. Li, Joule 2 1242 (2018). doi: 10.1016/j.joule.2018.06.019
    H. B. Zhang, G. G. Liu, L. Shi, and J. H. Ye, Adv. Energy Mater. 8 1701343 (2018). doi: 10.1002/aenm.201701343
    F. Rieboldt, L. B. Vilhelmsen, S. Koust, J. V. Lauritsen, S. Helveg, L. Lammich, F. Besenbacher, B. Hammer, and S. Wendt, J. Chem. Phys. 141 214702 (2014). doi: 10.1063/1.4902249
    H. V. Thang, G. Pacchioni, L. DeRita, and P. Christopher, J. Catal. 367 104 (2018). doi: 10.1016/j.jcat.2018.08.025
    Y. Shiraishi, N. Yasumoto, J. Imai, H. Sakamoto, S. Tanaka, S. Ichikawa, B. Ohtani, and T. Hirai, Nanoscale 9 8349 (2017). doi: 10.1039/C7NR02310C
    H. Q. Tang, Y. Lin, Z. W. Cheng, X. F. Cui, and B. Wang, Chin. J. Chem. Phys. 31 71 (2018). doi: 10.1063/1674-0068/31/cjcp1705103
    Y. Zhao, Z. Wang, X. F. Cui, T. Huang, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou, J. Am. Chem. Soc. 131 7958 (2009). doi: 10.1021/ja902259k
    Z. Wang, Y. Zhao, X. F. Cui, S. J. Tan, A. D. Zhao, B. Wang, J. L. Yang, and J. G. Hou, J. Phys. Chem. C 114 18222 (2010). doi: 10.1021/jp1059165
    S. J. Tan, Y. F. Ji, Y. Zhao, A. D. Zhao, B. Wang, J. L. Yang, and J. G. Hou, J. Am. Chem. Soc. 133 2002 (2011). doi: 10.1021/ja110375n
    L. N. Cao, W. Liu, Q. Q. Luo, R. T. Yin, B. Wang, J. Weissenrieder, M. Soldemo, H. Yan, Y. Lin, Z. H. Sun, C. Ma, W. H. Zhang, S. Chen, H. W. Wang, Q. Q. Guan, T. Yao, S. Q. Wei, J. L. Yang, and J. L. Lu, Nature 565 631 (2019). doi: 10.1038/s41586-018-0869-5
    X. Zhou, Q. Shen, K. D. Yuan, W. S. Yang, Q. W. Chen, Z. H. Geng, J. L. Zhang, X. Shao, W. Chen, G. Q. Xu, X. M. Yang, and K. Wu, J. Am. Chem. Soc. 140 554 (2018). doi: 10.1021/jacs.7b10394
    S. H. Dong, B. Li, X. F. Cui, S. J. Tan, and B. Wang, J. Phys. Chem. Lett. 10 4683 (2019). doi: 10.1021/acs.jpclett.9b01527
    X. F. Cui, Z. Wang, S. J. Tan, B. Wang, J. L. Yang, and J. G. Hou, J. Phys. Chem. C 113 13204 (2009). doi: 10.1021/jp901657u
    G. Kresse and J. Hafner, Phys. Rev. B 47 558 (1993). doi: 10.1103/PhysRevB.47.558
    G. Kresse and J. Hafner, Phys. Rev. B 48 13115 (1993). doi: 10.1103/PhysRevB.48.13115
    G. Kresse and J. Hafner, Phys. Rev. B 49 14251 (1994). doi: 10.1103/PhysRevB.49.14251
    P. E. Blöchl, Phys. Rev. B 50 17953 (1994). doi: 10.1103/PhysRevB.50.17953
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    S. Grimme, J. Comput. Chem. 27 1787 (2006).
    S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57 1505 (1998). doi: 10.1103/PhysRevB.57.1505
    U. Diebold, Appl. Phys. A 76 681 (2003). doi: 10.1007/s00339-002-2004-5
    M. A. Henderson, Surf. Sci. Rep. 66 185 (2011). doi: 10.1016/j.surfrep.2011.01.001
    M. A. Henderson and I. Lyubinetsky, Chem. Rev. 113 4428 (2013). doi: 10.1021/cr300315m
    A. D. Zhao, S. J. Tan, B. Li, B. Wang, J. L. Yang, and J. G. Hou, Phys. Chem. Chem. Phys. 15 12428 (2013). doi: 10.1039/c3cp51446c
    H. Iddir, V. Skavysh, S. Öǧüt, N. D. Browning, and M. M. Disko, Phys. Rev. B. 73, 041403 (2006).
    V. Çelik, H. Ünal, E. Mete, and Ș. Ellialtioǧlu, Phys. Rev. B 82 205113 (2010). doi: 10.1103/PhysRevB.82.205113
    T. Y. Chang, Y. Tanaka, R. Ishikawa, K. Toyoura, K. Matsunaga, Y. Ikuhara, and N. Shibata, Nano Lett. 14 134 (2014). doi: 10.1021/nl403520c
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (208) PDF downloads(21) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint