Volume 33 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
Hao Wu, Jian Chen, An-wen Liu, Shui-ming Hu, Jing-song Zhang. Cavity Ring-Down Spectroscopy Measurements of Ambient NO$_\bf{3}$ and N$_\bf{2}$O$_\bf{5}$[J]. Chinese Journal of Chemical Physics , 2020, 33(1): 1-7. doi: 10.1063/1674-0068/cjcp1910173
Citation: Hao Wu, Jian Chen, An-wen Liu, Shui-ming Hu, Jing-song Zhang. Cavity Ring-Down Spectroscopy Measurements of Ambient NO$_\bf{3}$ and N$_\bf{2}$O$_\bf{5}$[J]. Chinese Journal of Chemical Physics , 2020, 33(1): 1-7. doi: 10.1063/1674-0068/cjcp1910173

Cavity Ring-Down Spectroscopy Measurements of Ambient NO$_\bf{3}$ and N$_\bf{2}$O$_\bf{5}$

doi: 10.1063/1674-0068/cjcp1910173
More Information
  • Corresponding author: Shui-ming Hu, E-mail: smhu@ustc.edu.cn
  • Received Date: 2019-10-06
  • Accepted Date: 2019-12-02
  • Publish Date: 2020-02-27
  • NO$_3$ and N$_2$O$_5$ are important participants in nocturnal atmospheric chemical processes, and their concentrations are of great significance in the study of the mechanism of nocturnal atmospheric chemical reactions. A two-channel diode laser based cavity ring-down spectroscopy (CRDS) instrument was developed to monitor the concentrations of NO$_3$ and N$_2$O$_5$ in the atmosphere. The effective absorption length ratio and the total loss coefficient of the instrument were calibrated using laboratory standard samples. The effective absorption cross section of NO$_3$ at 662 nm was derived. A detection sensitivity of 1.1 pptv NO$_3$ in air was obtained at a time resolution of 1 s. N$_2$O$_5$ was converted to NO$_3$ and detected online in the second CRDS channel. The instrument was used to monitor the concentrations of NO$_3$ and N$_2$O$_5$ in the atmosphere of winter in Hefei in real time. By comparing the concentration changes of pollutants such as nitrogen oxides, ozone, PM$_{2.5}$ in a rapid air cleaning process, the factors affecting the concentrations of NO$_3$ and N$_2$O$_5$ in the atmosphere were discussed.


  • Part of The special topic on "The 3rd Asian Workshop on Molecular Spectroscopy"
  • loading
  • [1]
    B. J. Allan, N. Carslaw, H. Coe, R. A. Burgess, and J. M. C. Plane, J. Atmos. Chem. 33, 129 (1999). doi: 10.1023/A:1005917203307
    S. S. Brown and J. Stutz, Chem. Soc. Rev. 41, 6405 (2012). doi: 10.1039/c2cs35181a
    J. L. Fry, D. C. Draper, K. C. Barsanti, J. N. Smith, J. Ortega, P. M. Winkler, M. J. Lawler, S. S. Brown, P. M. Edwards, R. C. Cohen, and L. Lee, Environ. Sci. Technol. 48, 11944 (2014). doi: 10.1021/es502204x
    R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, and T. J. Wallington, Atmos. Chem. Phys. 8, 4141 (2008). doi: 10.5194/acp-8-4141-2008
    W. L. Chang, P. V. Bhave, S. S. Brown, N. Riemer, J. Stutz, and D. Dabdub, Aerosol Sci. Technol. 45, 655 (2011).
    F. J. Dentener and P. J. Crutzen, J. Geophys. Res. 98, 7149 (1993). doi: 10.1029/92JD02979
    D. Hanway and F. M. Tao, Chem. Phys. Lett. 285, 459 (1998). doi: 10.1016/S0009-2614(97)01382-1
    S. S. Brown, J. A. Neuman, T. B. Ryerson, M. Trainer, W. P. Dubé, J. S. Holloway, C. Warneke, J. A. de Gouw, S. G. Donnelly, E. Atlas, B. Matthew, A. M. Middlebrook, R. Peltier, R. J. Weber, A. Stohl, J. F. Meagher, F. C. Fehsenfeld, and A. R. Ravishankara, Geophys. Res. Lett. 33, L08801 (2006).
    N. Riemer, H. Vogel, B. Vogel, B. Schell, I. Ackermann, C. Kessler, and H. Hass, J. Geophys. Res. D Atmos. 108, 5 (2003).
    A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. Di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, J. Geophys. Res. Atmos. 108, 4368 (2003). doi: 10.1029/2002JD002967
    J. F. Noxon, R. B. Norton, and W. R. Henderson, Geophys. Res. Lett. 91, 5323 (1978).
    J. P. Kercher, T. P. Riedel, and J. A. Thornton, Atmos. Meas. Tech. 2, 193 (2009). doi: 10.5194/amt-2-193-2009
    D. Mihelcic, D. Klemp, P. Müsgen, H. W. Pätz, and A. Volz-Thomas, J. Atmos. Chem. 16, 313 (1993). doi: 10.1007/BF01032628
    A. Geyer, B. Alicke, D. Mihelcic, J. Stutz, and U. Platt, J. Geophys. Res. Atmos. 104, 26097 (1999). doi: 10.1029/1999JD900421
    J. Matsumoto, H. Imai, N. Kosugi, and Y. Kajii, Atmos. Environ. 39, 6802 (2005). doi: 10.1016/j.atmosenv.2005.07.055
    T. Wagner, C. Otten, K. Pfeilsticker, I. Pundt, and U. Platt, Geophys. Res. Lett. 27, 3441 (2000). doi: 10.1029/1999GL011153
    R. B. Norton and J. F. Noxon, J. Geophys. Res. 91, 5323 (1986). doi: 10.1029/JD091iD05p05323
    U. Platt, J. Meinen, D. Pöhler, and T. Leisner, Atmos. Meas. Tech. 3, 127 (2010). doi: 10.5194/amt-3-127-2010
    R. M. Varma, D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf, Appl. Opt. 18, B159-71 (2009).
    M. Baasandorj, S. W. Hoch, R. Bares, J. C. Lin, S. S. Brown, D. B. Millet, R. Martin, K. Kelly, K. J. Zarzana, C. D. Whiteman, W. P. Dube, G. Tonnesen, I. C. Jaramillo, and J. Sohl, Environ. Sci. Technol. 51, 5941 (2017). doi: 10.1021/acs.est.6b06603
    Z. Li, R. Hu, P. Xie, H. Wang, K. Lu, and D. Wang, Sci. Total Environ. 613-614, 131 (2018).
    S. Wang, C. Shi, B. Zhou, H. Zhao, Z. Wang, S. Yang, and L. Chen, Atmos. Environ. 70, 401 (2013). doi: 10.1016/j.atmosenv.2013.01.022
    Z. Li, R. Hu, P. Xie, H. Chen, S. Wu, F. Wang, Y. Wang, L. Ling, J. Liu and W. Liu, Opt. Express. 26, A433 (2018). doi: 10.1364/OE.26.00A433
    X. Wang, T. Wang, C. Yan, Y. J. Tham, L. Xue, Z. Xu, and Q. Zha, Atmos. Meas. Tech. 7, 1 (2014).
    J. Chen, H. Wu, A. W. Liu, S. M. Hu, and J. Zhang, Chin. J. Chem. Phys. 30, 493 (2017). doi: 10.1063/1674-0068/30/cjcp1705084
    W. P. Dubá, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, Rev. Sci. Instrum. 77, 034101 (2006). doi: 10.1063/1.2176058
    H. Fuchs, W. P. Dubé, S. J. Ciciora, and S. S. Brown, Anal. Chem. 80, 6010 (2008). doi: 10.1021/ac8007253
    H. D. Osthoff, M. J. Pilling, A. R. Ravishankara, and S. S. Brown, Phys. Chem. Chem. Phys. 9, 5785 (2007). doi: 10.1039/b709193a
    I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, J. Quant. Spectrosc. Radiat. Transf. 203, 3 (2017). doi: 10.1016/j.jqsrt.2017.06.038
    V. Gorshelev, A. Serdyuchenko, M. Weber, W. Chehade, and J. P. Burrows, Atmos. Meas. Tech. 7, 609 (2014). doi: 10.5194/amt-7-609-2014
    S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, S. Diego, L. Jolla, R. E. Huie, and V. L. Orkin, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 17, JPL Publication, 10-06 (2006).
    W. B. Demore, J. J. Margitan, M. J. Molina, R. T. Watson, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, and A. R. Ravishankara, Int. J. Chem. Kinet. 17, 1135 (1985). doi: 10.1002/kin.550171010
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1753) PDF downloads(93) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint