Rui Wang, Ding Ding, Wei Wei, Yi Cui. Near Ambient Pressure Adsorption of Nickel Carbonyl Contaminated CO on Cu(111) Surface[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 753-759. doi: 10.1063/1674-0068/cjcp1904066
Citation: Rui Wang, Ding Ding, Wei Wei, Yi Cui. Near Ambient Pressure Adsorption of Nickel Carbonyl Contaminated CO on Cu(111) Surface[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 753-759. doi: 10.1063/1674-0068/cjcp1904066

Near Ambient Pressure Adsorption of Nickel Carbonyl Contaminated CO on Cu(111) Surface

doi: 10.1063/1674-0068/cjcp1904066
More Information
  • Corresponding author: Yi Cui,
  • Received Date: 2019-04-01
  • Accepted Date: 2019-04-30
  • Publish Date: 2019-12-27
  • Formation of volatile nickel carbonyls with CO in catalytic reaction is one of the mechanisms of catalyst deactivation. CO is one of the most popular probe molecules to study the surface properties in model catalysis. Under ultra-high vacuum (UHV) conditions, the problem of nickel carbonyl impurity almost does not exist in the case that a high purity of CO is used directly. While in the near ambient pressure (NAP) range, nickel carbonyl is easily found on the surface by passing through the Ni containing tubes. Here, the NAP techniques such as NAP-X-ray photoelectron spectroscopy and NAP-scanning tunneling microscopy are used to study the adsorption of nickel carbonyl contaminated CO gas on Cu(111) surface in UHV and NAP conditions. By controlling the pressure of contaminated CO, the Ni-Cu bimetallic catalyst can form on Cu(111) surface. Furthermore, we investigate the process of CO adsorption and dissociation on the formed Ni-Cu bi-metal surface, and several high-pressure phases of CO structures are reported. This work contributes to understanding the interaction of nickel carbonyl with Cu(111) at room temperature, and reminds the consideration of CO molecules contaminated by nickel carbonyl especially in the NAP range study.


  • loading
  • [1]
    L. Mond, C. Langer, and F. Quincke, J. Chem. Soc. Trans. 57, 749 (1890). doi: 10.1039/CT8905700749
    R. S. H. Yang and E. J. Rauckman, Toxicology 47, 15 (1987). doi: 10.1016/0300-483X(87)90158-2
    K. Kester, E. Zag, and J. Falconer, Appl. Catal. 22, 311 (1986). doi: 10.1016/S0166-9834(00)82638-X
    G. Greiner and D. Menzel, J. Catal. 77, 382 (1982). doi: 10.1016/0021-9517(82)90180-4
    M. M. Windsor and A. A. Blanchard, J. Am. Chem. Soc. 55, 1877 (1933). doi: 10.1021/ja01332a013
    W. M. Goldberger and D. F. Othmer, Ind. Eng. Chem. Process Des. Dev. 2, 202 (1963). doi: 10.1021/i260007a006
    D. H. Stedman, D. A. Hikade, R. Pearson, and E. D. Yalvac, Science 208, 1029 (1980). doi: 10.1126/science.208.4447.1029
    E. G. Derouane, J. B. Nagy, and J. C. Védrine, J. Catal. 46, 434 (1977). doi: 10.1016/0021-9517(77)90231-7
    P. F. A. Alkemade, H. Fortuin, R. Balkenende, and F. H. P. M. Habraken, Surf. Sci. 225, 307 (1990). doi: 10.1016/0039-6028(90)90452-E
    I. Alstrup, U. E. Petersen, and J. R. Rostrup-Nielsen, J. Catal. 191, 401 (2000). doi: 10.1006/jcat.1999.2812
    B. Seemala, C. M. Cai, R. Kumar, C. E. Wyman, and P. Christopher, ACS Sustainable. Chem. Eng. 6, 2152 (2017).
    E. T. Saw, U. Oemar, X. R. Tan, Y. Du, A. Borgna, K. Hidajat, and S. Kawi, J. Catal. 314, 32 (2014). doi: 10.1016/j.jcat.2014.03.015
    A. R. Naghash, T. H. Etsell, and S. Xu, Chem. Mater. 18, 2480 (2006). doi: 10.1021/cm051910o
    J. H. Sinfelt, J. Catal. 29, 308 (1973). doi: 10.1016/0021-9517(73)90234-0
    H. H. Brongersma and M. J. Sparnaay, Surf. Sci. 71, 657 (1978). doi: 10.1016/0039-6028(78)90453-3
    M. Araki and V. Ponec, J. Catal. 44, 439 (1976). doi: 10.1016/0021-9517(76)90421-8
    J. A. Dalmon and G. A. Martin, J. Catal. 66, 214 (1980). doi: 10.1016/0021-9517(80)90023-8
    E. Asedegbega-Nieto, A. Guerrero-Ruíz, and I. Rodríguez-Ramos, Thermochim. Acta 434, 113 (2005). doi: 10.1016/j.tca.2005.01.026
    D. T. Ling and W. E. Spicer, Surf. Sci. 94, 403 (1980). doi: 10.1016/0039-6028(80)90015-1
    Y. Yao and D. W. Goodman, Phys. Chem. Chem. Phys. 16, 3823 (2014). doi: 10.1039/c3cp54997f
    B. Eren, D. Zherebetskyy, and L. L. Patera, Science 351, 475 (2016). doi: 10.1126/science.aad8868
    X. Zhang and S. Ptasinska, Phys. Chem. Chem. Phys. 8, 1632 (2016).
    G. Panzner, B. Egert, and H. P. Schmidt, Surf. Sci. 151, 400 (1985). doi: 10.1016/0039-6028(85)90383-8
    F. F. Tao and L. Nguyen, Phys. Chem. Chem. Phys. 20, 9812 (2018). doi: 10.1039/C7CP08429C
    T. Fleisch, G. L. Ott, W. N. Delgass, and N. Winograd, Surf. Sci. 81, 1 (1979). doi: 10.1016/0039-6028(79)90501-6
    C. R. Brundle and A. F. Carley, Faraday Discuss. Chem. Soc. 60, 51 (1975). doi: 10.1039/dc9756000051
    A. Furlan, J. Lu, L. Hultman, U. Jansson, and M. Magnuson, J. Phys.: Condens. Matter. 26, 415501 (2014). doi: 10.1088/0953-8984/26/41/415501
    N. Mahata, A. F. Cunha, J. J. M. Órfão, and J. L. Figueiredo, ChemCatChem. 2, 330 (2010). doi: 10.1002/cctc.200900299
    I. Czekaj, F. Loviat, F. Raimondi, J. Wambach, S. Biollaz, and A. Wokaun, Appl. Catal. A-Gen. 329, 68 (2007). doi: 10.1016/j.apcata.2007.06.027
    R. Ebrahim, A. Zomorrodian, N. Wu, and A. Ignatiev, Thin Solid Films 539, 337 (2013). doi: 10.1016/j.tsf.2013.04.142
    A. N. Mansour, Surf. Sci. Spectra 3, 231 (1994). doi: 10.1116/1.1247751
    R. T. Vang, E. Laegsgaard, and F. Besenbacher, Phys. Chem. Chem. Phys. 9, 3460 (2007). doi: 10.1039/B703328C
    Y. Jugnet, F. J. C. S. Aires, C. Deranlot, L. Piccolo, and J. C. Bertolini, Surf. Sci. 521, 639 (2002). doi: 10.1016/S0039-6028(02)02295-1
    J. Engbæk, O. Lytken, J. H. Nielsen, and I. Chorkendorff, Surf. Sci. 602, 733 (2008). doi: 10.1016/j.susc.2007.12.008
    K. Christmann, O. Schober, and G. Ertl, J. Chem. Phys. 60, 4719 (1974). doi: 10.1063/1.1680972
    H. Koschel, G. Held, and H. P. Steinruck, Surf. Sci. 453, 201 (2000). doi: 10.1016/S0039-6028(00)00349-6
    X. Xu and D. W. Goodman, J. Phys. Chem. 97, 683 (1993). doi: 10.1021/j100105a025
    H. J. Yang, T. Minato, M. Kawai, and Y. Kim, J. Phys. Chem. C 117, 16429 (2013). doi: 10.1021/jp404231t
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (2193) PDF downloads(74) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint