Volume 32 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
Hao Chen, Na Dong, Kai Wang, Yi Yao, Faqiang Xu. Dark Color ZnO Quasi-One-Dimensional Nanostructures Grown by Hydrothermal Method and Modulation of their Optical Properties[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 708-714. doi: 10.1063/1674-0068/cjcp1903045
Citation: Hao Chen, Na Dong, Kai Wang, Yi Yao, Faqiang Xu. Dark Color ZnO Quasi-One-Dimensional Nanostructures Grown by Hydrothermal Method and Modulation of their Optical Properties[J]. Chinese Journal of Chemical Physics , 2019, 32(6): 708-714. doi: 10.1063/1674-0068/cjcp1903045

Dark Color ZnO Quasi-One-Dimensional Nanostructures Grown by Hydrothermal Method and Modulation of their Optical Properties

doi: 10.1063/1674-0068/cjcp1903045
More Information
  • Corresponding author: Faqiang Xu, E-mail: fqxu@ustc.edu.cn, Tel.: +86-551-63602127
  • Received Date: 2019-03-12
  • Accepted Date: 2019-04-20
  • Publish Date: 2019-12-27
  • Zinc oxide has a large energy gap and thus it has potential application in the field of solar cells by tuning the absorption of sunlight. In order to enhance its absorption of sunlight, dark color zinc oxides have been prepared by traditional hydrothermal method directly using a zinc foil as both source and substrate. We found that we could tune the optical properties of ZnO samples by changing the temperature. In particular, increasing temperature could significantly reduce the reflectivity of solar energy in the visible range. We speculate that the phenomenon is relevant to the sharp cone morphology of the ZnO nanorods grown on the surface of Zn foils, which furthermore enhance refraction and reflection of light in the nanorods. The capacity to improve the light absorption of ZnO may have a bright application in raising the efficiency of solar cells.


  • loading
  • [1]
    E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K. H. Kim, Renew. Sust. Energy Rev. 82, 894 (2017). http://www.sciencedirect.com/science/article/pii/S1364032117313485
    N. Kannan and D. Vakeesan, Renew. Sust. Energy Rev. 62, 1092 (2016). doi: 10.1016/j.rser.2016.05.022
    A. I. Hochbaum and P. D. Yang, Chem. Rev. 110, 527 (2010). doi: 10.1021/cr900075v
    A. K. Hussein, Renew. Sust. Energy Rev. 42, 460 (2015). doi: 10.1016/j.rser.2014.10.027
    P. Ren and X. C. Yang, Sol. Rrl. 2, 1700233 (2018). doi: 10.1002/solr.201700233
    D. F. Guo and X. C. Yang, Sci. China Mater. 62, 711 (2019). doi: 10.1007/s40843-018-9353-5
    K. G. Satyanarayana, A. B. Mariano, and J. V. C. Vargas, Int. J. Energy Res. 35, 291 (2011). doi: 10.1002/er.1695
    D. Saygin, R. Kempener, N. Wagner, M. Ayuso, and D. Gielen, Energies 8, 5828 (2015). doi: 10.3390/en8065828
    U. Sahaym and M. G. Norton, J. Mater. Sci. 43, 5395 (2008). doi: 10.1007/s10853-008-2749-0
    H. Lund, Energy 32, 912 (2007). doi: 10.1016/j.energy.2006.10.017
    E. Serrano, G. Rus, and J. García-Martínez, Renew. Sust. Energy Rev. 13, 2373 (2009). doi: 10.1016/j.rser.2009.06.003
    X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, Science 316, 102 (2007). doi: 10.1126/science.1139366
    W. Z. Wu, X. N. Wen, and Z. L. Wang, Science 340, 952 (2013). doi: 10.1126/science.1234855
    X. H. Yang, G. Zhu, S. H. Wang, R. Zhang, L. Lin, W. Z. Wu, and Z. L. Wang, Energy Environ. Sci. 5, 9462 (2012). doi: 10.1039/c2ee23194h
    Y. Liu, A. Das, S. Xu, Z. Y. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, Adv. Energy Mater. 2, 47 (2012). doi: 10.1002/aenm.201100287
    C. Y. Lin, Y. H. Lai, H. W. Chen, J. G. Chen, C. W. Kung, R. Vittal, and K. C. Ho, Energy Environ. Sci. 4, 3448 (2011). doi: 10.1039/c0ee00587h
    Y. F. Wei, L. Ke, J. H. Kong, H. Liu, Z. H. Jiao, X. H. Lu, H. J. Du, and X. W. Sun, Nanotechnology 23, 235401 (2012). doi: 10.1088/0957-4484/23/23/235401
    Y. Tak, S. J. Hong, J. S. Lee, and K. J. Yong, J. Mater. Chem. 19, 5945 (2009). doi: 10.1039/b904993b
    C. H. Kwak, B. H. Kim, C. I. Park, S. Y. Seo, S. H. Kim, and S. W. Han, J. Cryst. Growth 314, 264 (2011). doi: 10.1016/j.jcrysgro.2010.10.066
    L. Luo, Y. F. Zhang, S. S. Mao, and L. W. Lin, Sens. Actuators A: Phys. 127, 201 (2006). doi: 10.1016/j.sna.2005.06.023
    M. Lorenz, A. Rahm, B. Q. Cao, J. Zúňiga-Pérez, E. M. Kaidashev, N. Zhakarov, G. Wagner, T. Nobis, C. Czekalla, G. Zimmermann, and M. Grundmann, Phys. Status Solidi B 247, 1265 (2010). doi: 10.1002/pssb.200945514
    O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, J. Photochem. Photobiol. A: Chem. 211, 65 (2010). doi: 10.1016/j.jphotochem.2010.02.004
    Y. H. Ko and J. S. Yu, Opt. Express 19, 297 (2011). doi: 10.1364/OE.19.000297
    J. Y. Chen and K. W. Sun, Sol. Energy Mater. Sol. Cells 94, 930 (2010). doi: 10.1016/j.solmat.2010.01.005
    Y. C. Zhang, T. Qiao, X. Y. Hu, and W. D. Zhou, Mater. Res. Bull. 40, 1696 (2005). doi: 10.1016/j.materresbull.2005.05.013
    L. Y. Zhu, Y. Xie, X. W. Zheng, X. Liu, and G. E. Zhou, J. Cryst. Growth 260, 494 (2004). doi: 10.1016/j.jcrysgro.2003.08.038
    J. Zhang and Z. K. Zhang, Mater. Lett. 62, 2279 (2008). doi: 10.1016/j.matlet.2007.11.069
    M. M. Li, Q. S. Wu, and J. L. Shi, J. Alloys Compd. 489, 343 (2010). doi: 10.1016/j.jallcom.2009.09.129
    K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996). doi: 10.1063/1.116699
    H. J. Egelhaaf and D. Oelkrug, J. Cryst. Growth 161, 190 (1996). doi: 10.1016/0022-0248(95)00634-6
    X. H. Lu, G. M. Wang, S. L. Xie, J. Y. Shi, W. Li, Y. X. Tong, and Y. Li, Chem. Commun. 48, 7717 (2012). doi: 10.1039/c2cc31773g
    N. Zhang, C. X. Shan, H. Q. Tan, Q. Zhao, S. P. Wang, Z. C. Sun, Y. D. Xia, and D. Z. Shen, Nanotechnology 27, 22LT01 (2016). doi: 10.1088/0957-4484/27/22/22LT01
    Y. S. Tian, C. G. Hu, Y. F. Xiong, B. Y. Wan, C. H. Xia, X. S. He, and H. Liu, J. Phys. Chem. C 114, 10265 (2010). doi: 10.1021/jp911854n
    T. Xia, P. Wallenmeyer, A. Anderson, J. Murowchick, L. Liu, and X. B. Chen, RSC Adv. 4, 41654 (2014). doi: 10.1039/C4RA04826A
    C. Z. Yao, B. H. Wei, H. X. Ma, H. Li, L. X. Meng, X. S. Zhang, and Q. J. Gong, J. Power Sources 237, 295 (2013). doi: 10.1016/j.jpowsour.2013.02.062
    J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007). doi: 10.1038/nphoton.2007.26
    Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, Nano Lett. 8, 1501 (2008). doi: 10.1021/nl080659j
    M. L. Dong, X. F. Cui, H. D. Wang, L. N. Zhu, G. Jin, and B. S. Xu, Rare Met. Mater. Eng. 45, 843 (2016). doi: 10.1016/S1875-5372(16)30085-6
    J. G. Lv, Q. Q. Zhu, Z. Zeng, M. Zhang, J. Yang, M. Zhao, W. H. Wang, Y. B. Cheng, G. He, and Z. Q. Sun, J. Phys. Chem. Solids 111, 104 (2017). doi: 10.1016/j.jpcs.2017.07.017
    P. Zhan, W. P. Wang, C. Liu, Y. Hu, Z. C. Li, Z. J. Zhang, P. Zhang, B. Y. Wang, and X. Z. Cao, J. Appl. Phys. 111, 033501 (2012). doi: 10.1063/1.3679560
    J. G. Lv, J. Y. Xu, M. Zhao, Y. Sun, Y. Y. Jiang, G. He, M. Zhang, and Z. Q. Sun, J. Mater. Sci.: Mater. Electron. 27, 4019 (2016). doi: 10.1007/s10854-015-4256-9
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (2108) PDF downloads(64) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint