Ming Wang, Jun Chen, Wei-fei Fei, Zhao-hui Li, Ye-peng Yu, Xuan Lin, Xiao-bin Shan, Fu-yi Liu, Liu-si Sheng. Dissociative Photoionization of 1,4-Dioxane with Tunable VUV Synchrotron Radiation[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 379-388. doi: 10.1063/1674-0068/30/cjcp1704068
Citation: Ming Wang, Jun Chen, Wei-fei Fei, Zhao-hui Li, Ye-peng Yu, Xuan Lin, Xiao-bin Shan, Fu-yi Liu, Liu-si Sheng. Dissociative Photoionization of 1,4-Dioxane with Tunable VUV Synchrotron Radiation[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 379-388. doi: 10.1063/1674-0068/30/cjcp1704068

Dissociative Photoionization of 1,4-Dioxane with Tunable VUV Synchrotron Radiation

doi: 10.1063/1674-0068/30/cjcp1704068
  • Received Date: 2017-03-11
  • Rev Recd Date: 2017-04-11
  • The photoionization and photodissociation of 1,4-dioxane have been investigated with a reflectron time-of-flight photoionization mass spectrometry and a tunable vacuum ultraviolet synchrotron radiation in the energy region of 8.0-15.5 eV. Parent ion and fragment ions at m/z 88, 87, 58, 57, 45, 44, 43, 41, 31, 30, 29, 28 and 15 are detected under supersonic conditions. The ionization energy of DX as well as the appearance energies of its fragment ions C4H7O2+, C3H6O+, C3H5O+, C2H5O+, C2H4O+, C2H3O+, C3H5+, CH3O+, C2H6+, C2H5+/CHO+, C2H4+ and CH3+ was determined from their photoionization efficiency curves. The optimized structures for the neutrals, cations, transition states and intermediates related to photodissociation of DX are characterized at the B3LYP/6-31+G(d,p) level and their energies are obtained by G3B3 method. Possible dissociative channels of the DX are proposed based on comparison of experimental AE values and theoretical predicted ones. Intramolecular hydrogen migrations are found to be the dominant processes in most of the fragmentation pathways of 1,4-dioxane.

     

  • loading
  • [1]
    D. K. Stepien, P. Diehl, J. Helm, A. Thoms, and W. Puttmann, Water Res. 48, 406(2014).
    [2]
    M. J. Zenker, R. C. Borden, and M. A. Barlaz, Environ. Eng. Sci. 20, 423(2003).
    [3]
    D. T. Adamson, S. Mahendra, K. Walker, S. Rauch, S. Sengupta, and C. Newell, Environ. Sci. Technol. Lett. 1, 254(2014).
    [4]
    C. T. Derosa, S.Wilbur, J. Holler, P. Richter, and Y. W. Stevens, Toxicol. Ind. Health 12, 1(1996).
    [5]
    J. Y. Choi, Y. J. Lee, J. Shin, and J. W. Yang, J. Hazard. Mater. 179, 762(2010).
    [6]
    W. Shen, H. Chen, and S. Pan, Bioresour. Technol. 99, 2483(2008).
    [7]
    M. J. Zenker, R. C. Borden, and M. A. Barlaz, J. Environ. Eng. 130, 926(2004).
    [8]
    J. Platz, J. Sehested, O. J. Nielsen, and T. J. Wallington, J. Chem. Soc. Faraday Trans. 93, 2855(1997).
    [9]
    T. Maurer, H. Hass, I. Barnes, and K. H. Becker, J. Phys. Chem. A 103, 5032(1999).
    [10]
    J. E. Collin and G. Condé, Bull. Class Sci. Acad. Roy. Belg. 52, 978(1966).
    [11]
    J. C. Traeger, Org. Mass Spectrom. 20, 223(1985).
    [12]
    M. L. Fraser-Monteiro, J. J. Butler, and T. Baer, J. Phys. Chem. 86, 739(1982).
    [13]
    R. Thissen, P. Mourgues, and H. E. Audier, Eur. Mass Spectrom. 4, 79(1998).
    [14]
    R. Thissen, H. E. Audier, J. C. Rooke, and P. Mourgues, Eur. Mass Spectrom. 5, 147(1999).
    [15]
    P. Zou, G. S. Wu, W. W. Chen, D. L. Yang, L. S. Sheng, G. H. Wu, W. Q. Ye, and Y. W. Zhang, J. Acta. PhysChim. 14, 21(1998).
    [16]
    J. Jalonen, J. M. Tedder, and P. H. Nidaud, J. Chem. Soc. Faraday Trans. Ⅱ 76, 1450(1980).
    [17]
    M. J. Polce and C. Wesdemiotis, J. Am. Chem. Soc. 115, 10849(1993).
    [18]
    A. B. Burrill and P. M. Johnson, Chem. Phys. Lett. 350, 473(2001).
    [19]
    K. Watanabe, T. Nakayama, and J. Mottl, J. Quant. Spectry. Radiative Transfer. 2, 369(1962).
    [20]
    C. S. Lam, W. K. Li, and S. W. Chiu, J. Phys. Chem. A 109, 7296(2005).
    [21]
    C. E. Hudson, D. J. McAdoo, and J. C. Traeger, J. Am. Soc. Mass Spectrom. 13, 1235(2002).
    [22]
    J. Chen, M. Q. Cao, B. Wei, M. M. Ding, X. B. Shan, F. Y. Liu, and L. S. Sheng, J. Mass Spectrom. 51, 169(2016)
    [23]
    M. Q. Cao, Y. Q. Li, G. B. Chu, J. Chen, X. B. Shan, F. Y. Liu, Z. Y Wang, and L. S. Sheng, J. Electron Spectrosc. Relat. Phenom. 191, 41(2013).
    [24]
    W. Z. Fang, L. Gong, Q. Zhang, X. B. Shan, F. Y. Liu, and L. S. Sheng, J. Chem. Phys. 134, 174306(2011).
    [25]
    W. X. Li, Y. J. Hu, J. W. Guan, F. Y. Liu, X. B. Shan, and L. S. Sheng, J. Chem. Phys. 139, 024307(2013).
    [26]
    B. Franziska, N. R. Qiao, G. Amir, Paul R. Horn, A. Musahid, R. L. Stephen, and H. G. Martin, J. Am. Chem. Soc. 135, 14229(2013).
    [27]
    M. C. Castrovilli, P. Bolognesi, A. Cartoni, D. Catone, P. O’Keeffe, A. R. Casavola, S. Turchini, N. Zema, and L. Avaldi, J. Am. Soc. Mass Spectrom. 25, 351(2014).
    [28]
    X. F. Tang, X. G. Zhou, M. Niu, S. Liu, J. Sun, X. B. Shan, F. Y. Liu, and L. S. Sheng, Rev. Sci. Instrum. 80, 113101(2009).
    [29]
    S. Zhang, Y. M. Wang, Z. Z. Cao, B. Zhang, S. S. Wang, R. H. Kong, Y. J. Zhao, X. B. Shan, and L. S. Sheng, Rev. Sci. Inst. 78, 043104(2007).
    [30]
    R. H. Kong, X. B. Shan, S. S. Wang, Y. W. Zhang, L. S. Sheng, L. Q. Hao, and Z. Y. Wang, J. Electron Spectrosc. Relat. Phenom. 160, 49(2007).
    [31]
    X. Y. Liu, W. J. Zhang, Z. Y. Wang, M. Q. Huang, X. B. Yang, L. Tao, Y. Sun, Y. T. Xu, X. B. Shan, F. Y. Liu, and L. S. Sheng, J. Mass. Spectrom. 44, 404(2009).
    [32]
    W. Z. Fang, G. Lei, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, J. Electron Spectrosc. Relat. Phenom. 184, 129(2011).
    [33]
    W. Z. Fang, L. Gong, X. B. Shan, Y. J. Zhao, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, J. Mass. Spectrom. 46, 1152(2011).
    [34]
    W. Z. Fang, L. Gong, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, Anal. Chem. 83, 9024(2011).
    [35]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, H. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. M. Martain, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1, Wallingford, CT: Gaussian, Inc., (2009).
    [36]
    http://webbook.nist.gov/Last accessed (2017).
    [37]
    R. Wada and M. Kato, Chem. Phys. Lett. 641, 74(2015).
    [38]
    R. C. Dunbar, F. S. Huang, and S. J. Klippenstein, Int. J. Mass Spectrom. Ion Proc. 128, 2l (1993).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1219) PDF downloads(619) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return