FeOx Coating on Pd/C Catalyst by Atomic Layer Deposition Enhances the Catalytic Activity in Dehydrogenation of Formic Acid
-
Graphical Abstract
-
Abstract
Hydrogen generation from formic acid (FA) has received significant attention.The challenge is to obtain a highly active catalyst under mild conditions for practical applications.Here atomic layer deposition (ALD) of FeOx was performed to deposit an ultrathin oxide coating layer to a Pd/C catalyst,therein the FeOx coverage was precisely controlled by ALD cycles.Transmission electron microscopy and powder X-ray diffraction measurements suggest that the FeOx coating layer improved the thermal stability of Pd nanoparticles (NPs).X-ray photoelectron spectroscopy measurement showed that deposition of FeOx on the Pd NPs caused a positive shift of Pd3d binding energy.In the FA dehydrogenation reaction,the ultrathin FeOx layer on the Pd/C could considerably improve the catalytic activity,and Pd/C coated with 8 cycles of FeOx showed an optimized activity with turnover frequency being about 2 times higher than the uncoated one.The improved activities were in a volcanoshape as a function of the number of FeOx ALD cycles,indicating the coverage of FeOx is critical for the optimized activity.In summary,simultaneous improvements of activity and thermal stability of Pd/C catalyst by ultra-thin FeOx overlayer suggest to be an effective way to design active catalysts for the FA dehydrogenation reaction.
-
-