Advanced Search
Zhi-qiang Zhao, Shu Liu, Dong H. Zhang. Differential Cross Sections for the H+D2O→HD+OD Reaction: a Full Dimensional State-to-State Quantum Dynamics Study[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 16-24. DOI: 10.1063/1674-0068/30/cjcp1608163
Citation: Zhi-qiang Zhao, Shu Liu, Dong H. Zhang. Differential Cross Sections for the H+D2O→HD+OD Reaction: a Full Dimensional State-to-State Quantum Dynamics Study[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 16-24. DOI: 10.1063/1674-0068/30/cjcp1608163

Differential Cross Sections for the H+D2O→HD+OD Reaction: a Full Dimensional State-to-State Quantum Dynamics Study

More Information
  • Received Date: August 21, 2016
  • Revised Date: September 16, 2016
  • The time-dependent wave-packet method was employed to calculate the first full-dimensional state-to-state differential cross sections (DCS) for the title reaction with D2O in the ground and the first symmetric (100) and asymmetric stretching (001) excited states. The calculated DCSs for these three initial states are strongly backward peaked at low collision energies. With the increase of collision energy, these DCSs become increasingly broader with the peak position shifting gradually to a smaller angle, consistent with the fact that the title reaction is a direct reaction via an abstraction mechanism. It is found that the (100) and (001) states not only have roughly the same integral cross sections, but also have essentially identical DCS, which are very close to that for the ground state at the same total energy of reaction. The reaction produces a small fraction of OD in the v=1 state, with the population close to the relative reactivity between the ground and vibrationally excited states, therefore confirming the experimental result of Zare et al. and the local mode picture[J. Phys. Chem. 97 , 2204 (1993)]. Unexpectedly, the stretching excitation reduces the rotation excitation of product HD at the same total energy.
  • [1]
    G. C. Schatz and H. Elgersman, Chem. Phys. Lett. 73, 21(1980).
    [2]
    G. O. de Aspuru and D. C. Clary, J. Phys. Chem. A 102, 9631(1998).
    [3]
    G. Wu, G. C. Schatz, G. Lendvay, D. C. Fang, and L. B. Harding, J. Chem. Phys. 113, 3150(2000).
    [4]
    M. Yang, D. H. Zhang, M. A. Collins, and S. Y. Lee, J. Chem. Phys. 115, 174(2001).
    [5]
    J. Chen, X. Xu, and D. H. Zhang, J. Chem. Phys. 138, 154301(2013).
    [6]
    A. Sinha, J. Phys. Chem. 94, 4391(1990).
    [7]
    A. Sinha, M. C. Hsiao, and F. F. Crim, J. Chem. Phys. 94, 4928(1991).
    [8]
    M. J. Bronikowski, W. R. Simpson, and R. N. Zare, J. Phys. Chem. 97, 2204(1993).
    [9]
    A. Sinha, M. C. Hsiao, and F. F. Crim, J. Chem. Phys. 92, 6333(1990).
    [10]
    M. J. Bronikowski, W. R. Simpson, B. Girard, and R. N. Zare, J. Chem. Phys. 95, 8647(1991).
    [11]
    M. J. Bronikowski, W. R. Simpson, and R. N. Zare, J. Phys. Chem. 97, 2194(1993).
    [12]
    K. Kudla and G. C. Schatz, Chem. Phys. Lett. 193, 507(1992).
    [13]
    K. Kudla and G. C. Schatz, J. Chem. Phys. 98, 4644(1993).
    [14]
    D. Troya, M. González, and G. C. Schatz, J. Chem. Phys. 114, 8397(2001).
    [15]
    D. C. Clary, Chem. Phys. Lett. 192, 34(1992).
    [16]
    J. M. Bowman and D. Wang, J. Chem. Phys. 96, 7852(1992).
    [17]
    D. Wang and J. M. Bowman, J. Chem. Phys. 98, 6235(1993).
    [18]
    D. H. Zhang and J. C. Light, J. Chem. Soc., Faraday Trans. 93, 691(1997).
    [19]
    B. Jiang, D. Xie, and H. Guo, J. Chem. Phys. 135, 084112(2011).
    [20]
    B. Fu and D. H. Zhang, J. Chem. Phys. 138, 184308(2013).
    [21]
    B. Fu and D. H. Zhang, J. Chem. Phys. 142, 064314(2015).
    [22]
    S. Liu and D. H. Zhang, Chem. Sci. 7, 261(2016).
    [23]
    D. H. Zhang and S. Y. Lee, J. Chem. Phys. 110, 4435(1999).
    [24]
    E. M. Goldfield and S. K. Gray, J. Chem. Phys. 117, 1604(2002).
    [25]
    D. H. Zhang, M. Yang, and S. Y. Lee, J. Chem. Phys. 117, 10067(2002).
    [26]
    B. Fu, Y. Zhou, and D. H. Zhang, Chem. Sci. 3, 270(2011).
    [27]
    B. Jiang and H. Guo, J. Am. Chem. Soc. 135, 15251(2013).
    [28]
    D. H. Zhang, D. Xie, M. Yang, and S. Y. Lee, Phys. Rev. Lett. 89, 283203(2002).
    [29]
    D. H. Zhang, J. Chem. Phys. 125, 133102(2006).
    [30]
    M. T. CvitaŠ and S. C. Althorpe, J. Phys. Chem. A 113, 4557(2009).
    [31]
    M. T. CvitaŠ and S. C. Althorpe, Phys. Scr. 80, 048115(2009).
    [32]
    M. T. CvitaŠ and S. C. Althorpe, J. Chem. Phys. 134, 024309(2011).
    [33]
    C. Xiao, X. Xu, S. Liu, T. Wang, W. Dong, T. Yang, Z. Sun, D. Dai, D. H. Zhang, and X. Yang, Science 333, 440(2011).
    [34]
    S. Liu, X. Xu, and D. H. Zhang, J. Chem. Phys. 136, 144302(2012).
    [35]
    S. Liu, C. Xiao, T. Wang, J. Chen, X. Xu, D. H. Zhang, and X. Yang, Faraday Discuss. 157, 101(2012).
    [36]
    T. Peng and J. Z. H. Zhang, J. Chem. Phys. 105, 6072(1996).
    [37]
    Y. Huang, W. Zhu, D. J. Kouri, and D. K. Hoffman, J. Phys. Chem. 98, 1868(1994).
    [38]
    S. C. Althorpe, D. J. Kouri, and D. K. Hoffman, J. Chem. Phys. 106, 7629(1997).
    [39]
    M. D. Feit and J. A. Fleck, J. Chem. Phys. 78, 301(1983).
    [40]
    D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys. 101, 1146(1994).
    [41]
    D. H. Zhang and J. C. Light, J. Chem. Phys. 104, 4544(1996).
    [42]
    M. E. Rose, Elementary Theory of Angular Momentum, New York:John Wiley, (1995).
    [43]
    M. T. Hagan and M. B. Menhaj, Neural Networks, IEEE Trans. 5, 989(1994).
    [44]
    W. S. Sarle, in Proceedings of the 27th Symposium on the Interface, (1995).
    [45]
    L. M. Raff, M. Malshe, M. Hagan, D. I. Doughan, M. G. Rockley, and R. Komanduri, J. Chem. Phys. 122, 084104(2005).
    [46]
    S. Koppe, T. Laurent, P. D. Naik, H. Volpp, and J. Wolfrum, Can. J. Chem. 72, 615(1994).
    [47]
    D. H. Zhang, M. A. Collins, and S. Y. Lee, Science 290, 961(2000).
  • Cited by

    Periodical cited type(11)

    1. Xu, X., Chen, J., Liu, S. et al. Differential Cross-Sections for the Vibrationally Excited H + HOD(vOH = 1-4) → H2 + OD Reactions. Journal of Physical Chemistry A, 2024, 128(48): 10395-10403. DOI:10.1021/acs.jpca.4c06429
    2. Xu, X., Liu, S., Chen, J. et al. High vibrational excitation of the reagent transforms the late-barrier H + HOD reaction into an early-barrier reaction. Journal of Chemical Physics, 2024, 160(4): 041101. DOI:10.1063/5.0187094
    3. Braunstein, M., Bonnet, L. A quasi-classical study in a quantum spirit of mode specificity of the H + HOD abstraction reaction. Physical Chemistry Chemical Physics, 2024. DOI:10.1039/d4cp03029j
    4. Xu, X., Chen, J., Liu, S. et al. Differential Cross Sections for the H + H2S → H2 + SH Reaction: A Full-Dimensional State-to-State Quantum Dynamics Study. Journal of Physical Chemistry A, 2023, 127(45): 9513-9519. DOI:10.1021/acs.jpca.3c05844
    5. Liu, S., Chen, J., Zhang, X. et al. Feshbach resonances in the F + CHD3 → HF + CD3 reaction. Chemical Science, 2023, 14(29): 7973-7979. DOI:10.1039/d3sc02629a
    6. Sathyamurthy, N., Mahapatra, S. Time-dependent quantum mechanical wave packet dynamics. Physical Chemistry Chemical Physics, 2021, 23(13): 7586-7614. DOI:10.1039/d0cp03929b
    7. Liu, S., Zhang, X., Chen, J. et al. Feshbach Resonances in the Vibrationally Excited F + HOD(vOH/vOD= 1) Reaction Due to Chemical Bond Softening. Journal of Physical Chemistry Letters, 2021. DOI:10.1021/acs.jpclett.1c01586
    8. Fu, B., Zhang, D.H. Ab Initio Potential Energy Surfaces and Quantum Dynamics for Polyatomic Bimolecular Reactions. Journal of Chemical Theory and Computation, 2018, 14(5): 2289-2303. DOI:10.1021/acs.jctc.8b00006
    9. Hu, X., Zhou, L., Xie, D. State-to-state photodissociation dynamics of the water molecule. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8(2): e1350. DOI:10.1002/wcms.1350
    10. Yang, D., Hu, X., Zhang, D.H. et al. An improved coupled-states approximation including the nearest neighbor Coriolis couplings for diatom-diatom inelastic collision. Journal of Chemical Physics, 2018, 148(8): 084101. DOI:10.1063/1.5010807
    11. Fu, B., Shan, X., Zhang, D.H. et al. Recent advances in quantum scattering calculations on polyatomic bimolecular reactions. Chemical Society Reviews, 2017, 46(24): 7625-7649. DOI:10.1039/c7cs00526a

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1432) PDF downloads (733) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return