Yu-jia Huo, Fan-fan Yao, Yun-sheng Ma. Catalytic Performance of Graphite Oxide Supported Au Nanoparticles in Aerobic Oxidation of Benzyl Alcohol: Support Effect[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 90-96. doi: 10.1063/1674-0068/30/cjcp1604088
Citation: Yu-jia Huo, Fan-fan Yao, Yun-sheng Ma. Catalytic Performance of Graphite Oxide Supported Au Nanoparticles in Aerobic Oxidation of Benzyl Alcohol: Support Effect[J]. Chinese Journal of Chemical Physics , 2017, 30(1): 90-96. doi: 10.1063/1674-0068/30/cjcp1604088

Catalytic Performance of Graphite Oxide Supported Au Nanoparticles in Aerobic Oxidation of Benzyl Alcohol: Support Effect

doi: 10.1063/1674-0068/30/cjcp1604088
  • Received Date: 2016-04-25
  • Rev Recd Date: 2016-05-11
  • Various Au/GO catalysts were prepared by depositing Au nanoparticles on thermally- and chemically-treated graphite oxide (GO) supports using a sol-immobilization method. The surface chemistry and structure of GO supports were characterized by a series of analytical techniques including X-ray photoelectron spectroscopy, temperature-programmed desorption and Raman spectroscopy. The results show that thermal and chemical treatments have large influence on the presence of surface oxygenated groups and the crystalline structure of GO supports. A strong support effect was observed on the catalytic activity of Au/GO catalysts in the liquid phase aerobic oxidation of benzyl alcohol. Compared to the amount and the type of surface oxygen functional groups, the ordered structure of GO supports may play a more important role in determining the catalytic performance of Au/GO catalysts.

     

  • loading
  • [1]
    R. A. Sheldon, I. W. C. E. Arends, G. J. T. Brink, and A. Dijksman, Acc. Chem. Res. 35, 774(2002).
    [2]
    T. Mallat and A. Baiker, Chem. Rev. 104, 3037(2004).
    [3]
    C. D. Pina, E. Falletta, and M. Rossi, Chem. Soc. Rev. 41, 350(2012).
    [4]
    L. Prati and M. Rossi, J. Catal. 176, 552(1998).
    [5]
    F. Rodríguez-reinoso, Carbon 36, 159(1998).
    [6]
    J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Órfão, Carbon 37, 1379(1999).
    [7]
    M. Besson and P. Gallezot, Catal. Today 57, 127(2000).
    [8]
    C. D. Pina, E. Falletta, L. Prati, and M. Rossi, Chem. Soc. Rev. 37, 2077(2008).
    [9]
    C. Bianchi, F. Porta, L. Prati, and M. Rossi, Top. Catal. 13, 231(2000).
    [10]
    S. Meenakshisundaram, E. Nowicka, P. J. Miedziak, G. L. Brett, R. L. Jenkins, N. Dimitratos, S. H. Taylor, D. W. Knight, D. Bethell, and G. J. Hutchings, Faraday Discuss. 145, 341(2010).
    [11]
    W. Fang, J. Chen, Q. Zhang, W. Deng, and Y. Wang, Chem. Eur. J 17, 1247(2011).
    [12]
    J. L. Figueiredo and M. F. R. Pereira, Catal. Today 150, 2(2010).
    [13]
    E. G. Rodrigues, M. F. R. Pereira, X. Chen, J. J. Delgado, and J. J. M. Órfão, J. Catal. 281, 119(2011).
    [14]
    E. G. Rodrigues, J. J. Delgado, X. Chen, M. F. R. Pereira, and J. J. M. Órfão, Ind. Eng. Chem. Res. 51, 15884(2012).
    [15]
    J. Zhu, S. A. C. Carabineiro, D. Shan, J. L. Faria, Y. Zhu, and J. L. Figueiredo, J. Catal. 274, 207(2010).
    [16]
    S. Gil, L. Muñoz, L. Sánchez-Silva, A. Romero, and J. L. Valverde, Chem. Eng. J. 172, 418(2011).
    [17]
    D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228(2010).
    [18]
    X. Yu, Y. Huo, J. Yang, S. Chang, Y. Ma, and W. Huang, Appl. Surf. Sci. 280, 450(2013).
    [19]
    N. M. Julkapli and S. Bagheri, Int. J. Hydrogen Energy 40, 948(2015).
    [20]
    S. Rostamnia, E. Doustkhah, Z. Karimi, S. Amini, and R. Luque, ChemCatChem 7, 1678(2015).
    [21]
    B. Zahed and H. Hosseini-Monfared, Appl. Surf. Sci. 328, 536(2015).
    [22]
    W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339(1958).
    [23]
    C. Bao, L. Song, W. Xing, B. Yuan, C. A. Wilkie, J. Huang, Y. Guo, and Y. Hu, J. Mater. Chem. 22, 6088(2012).
    [24]
    H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, and Y. H. Lee, Adv. Func. Mater. 19, 1987(2009).
    [25]
    X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, and H. J. Dai, Nat. Nanotechnol. 3, 538(2008).
    [26]
    J. Pritchard, L. Kesavan, M. Piccinini, Q. He, R. Tiruvalam, N. Dimitratos, J. A. Lopez-Sanchez, A. F. Carley, J. K. Edwards, C. J. Kiely, and G. J. Hutchings, Langmuir 26, 16568(2010).
    [27]
    G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, and R. Mülhaupt, J. Am. Chem. Soc. 131, 8262(2009).
    [28]
    R. Nie, J. Wang, L. Wang, Y. Qin, P. Chen, and Z. Hou, Carbon 50, 586(2012).
    [29]
    M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater. 19, 4396(2007).
    [30]
    J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Órfão, Ind. Eng. Chem. Res. 46, 4110(2007).
    [31]
    P. Brender, R. Gadiou, J. C. Rietsch, P. Fioux, J. Dentzer, A. Ponche, and C. Vix-Guterl, Anal. Chem. 84, 2147(2012).
    [32]
    X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, and F. Zhang, Adv. Mater. 20, 4490(2008).
    [33]
    W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, Nat. Chem. 1, 403(2009).
    [34]
    A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095(2000).
    [35]
    J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, Langmuir 25, 5957(2009).
    [36]
    S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558(2007).
    [37]
    S. Laref, F. Delbecq, and D. Loffreda, J. Catal. 265, 35(2009).
    [38]
    B. N. Zope, D. D. Hibbitts, M. Neurock, and R. J. Davis, Science 330, 74(2010).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1164) PDF downloads(534) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return