Li-bo Zhang, Hui Fang, Shun-li Chen, Xue-feng Zhu, Wei Gan. Orientation Angle of Molecules at Hexadecane-Water Interface Studied with Total Internal Reflection Second Harmonic Generation[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 650-656. doi: 10.1063/1674-0068/29/cjcp1605111
Citation: Li-bo Zhang, Hui Fang, Shun-li Chen, Xue-feng Zhu, Wei Gan. Orientation Angle of Molecules at Hexadecane-Water Interface Studied with Total Internal Reflection Second Harmonic Generation[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 650-656. doi: 10.1063/1674-0068/29/cjcp1605111

Orientation Angle of Molecules at Hexadecane-Water Interface Studied with Total Internal Reflection Second Harmonic Generation

doi: 10.1063/1674-0068/29/cjcp1605111
  • Received Date: 2016-05-17
  • Rev Recd Date: 2016-07-04
  • The orientation angle is an important parameter that reflects the structure of molecules at interfaces. In order to obtain this parameter, second order nonlinear spectroscopic techniques including second harmonic generation (SHG) and sum frequency generation-vibrational spectroscopy (SFG-VS) have been successfully applied through analysis of the nonlinear signal from various polarizations. In some SHG and SFG-VS experiments, total internal reflection (TIR) configuration has been adopted to get enhanced signals. However, the reports on the detailed procedure of the polarization analysis and the calculation of the orientation angle of interfacial molecules under TIR configuration are still very few. In this paper, we measured the orientation angles of two molecules at the hexadecane-water interface under TIR and Non-TIR experimental configurations. The results measured from polarization analysis in TIR configuration consist with those obtained from Non-TIR configuration. This work demonstrates the feasibility and accuracy of polarization analysis in the determination of the orientation angle of molecules at the interfaces under TIR-SHG configuration.
  • 加载中
  • [1] S. Saini, G. Srinivas, and B. Bagchi, J. Phys. Chem. B 113, 1817(2009).
    [2] J. I. Dadap and K. B. Eisenthal, J. Phys. Chem. B 118, 14366(2014).
    [3] S. Ghosal, J. C. Hemminger, H. Bluhm, B. S. Mun, E. L. D. Hebenstreit, G. Ketteler, D. F. Ogletree, F. G. Requejo, and M. Salmeron, Science. 307, 563(2005).
    [4] Y. Wang, H. Xu, H. Wang, S. Li, W. Gan, and Q. Yuan, RSC Adv. 4, 20256(2014).
    [5] D. M. Mitrinovic, Z. Zhang, S. M. Williams, Z. Huang, and M. L. Schlossman, J. Phys. Chem. B 103, 1779(1999).
    [6] G. Alvarez, J. Jestin, J. F. Argillier, and D. Langevin, Langmuir 25, 3985(2009).
    [7] J. Zhang, P. Chen, B. Yuan, W. Ji, Z. Cheng, and X. Qiu, Science 342, 611(2013).
    [8] G. L. Richmond, Chem. Rev. 102, 2693(2002).
    [9] K. B. Eisenthal, Chem. Rev. 106, 1462(2006).
    [10] H. F. Wang, L. Velarde, W. Gan, and L. Fu, Annu. Rev. Phys. Chem. 66, 189(2015).
    [11] D. Zhang, J. Gutow, and K. B. Eisenthal, J. Phys. Chem. 98, 13729(1994).
    [12] D. E. Gragson, B. M. McCarty, and G. L. Richmond, J. Am. Chem. Soc. 119, 6144(1997).
    [13] S. Sun, C. Tian, and Y. R. Shen, Proc. Natl. Acad. Sci. 112, 5883(2015).
    [14] Y. Niu, K. Tian, W. Gan, and S. Ye, J. Mol. Liq. 219, 111(2016).
    [15] L. Fu, S. L. Chen, W. Gan, and H. F. Wang, Chin. J. Chem. Phys. 29, 70(2016).
    [16] G. J. Holinga, R. L. York, R. M. Onorato, C. M. Thompson, N. E. Webb, A. P. Yoon, and G. A. Somorjai, J. Am. Chem. Soc. 133, 6243(2011).
    [17] H. Zhang, F. Li, Q. Xiao, and H. Lin, J. Phys. Chem. Lett. (2015).
    [18] M. S. Yeganeh, S. M. Dougal, and H. S. Pink, Phys. Rev. Lett. 83, 1179(1999).
    [19] W. Gan, G. Gonella, M. Zhang, and H. L. Dai, J. Chem. Phys. 134, 041104(2011).
    [20] M. C. Messmer, J. C. Conboy, and G. L. Richmond, J. Am. Chem. Soc. 117, 8039(1995).
    [21] W. Wu, H. Fang, F. Yang, S. Chen, X. Zhu, Q. Yuan, and W. Gan, J. Phys. Chem. C 120, 6515(2016).
    [22] D. A. Beattie, R. Fraenkel, S. A. Winget, A. Petersen, and C. D. Bain, J. Phys. Chem. B 110, 2278(2006).
    [23] X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, Phys. Rev. B 59, 12632(1999).
    [24] N. Bloembergen and C. H. Lee, Phys. Rev. Lett. 19, 835(1967).
    [25] J. Conboy, J. Daschbach, and G. Richmond, J. Phys. Chem. 98, 9688(1994).
    [26] J. C. Conboy and G. L. Richmond, Electrochim. Acta 40, 2881(1995).
    [27] H. Nagatani, D. J. Fermn, and H. H. Girault, J. Phys. Chem. B 105, 9463(2001).
    [28] T. Uchida, A. Yamaguchi, T. Ina, and N. Teramae, J. Phys. Chem. B 104, 12091(2000).
    [29] Y. R. Shen, the Principles of Nonlinear Optics, Hoboken, NJ:Wiley-Interscience (1984).
    [30] G. Berkovic, T. Rasing, and Y. R. Shen, J. Opt. Soc. Am. B 4, 945(1987).
    [31] R. M. Corn and D. A. Higgins, Chem. Rev. 94, 107(1994).
    [32] K. B. Eisenthal, Chem. Rev. 96, 1343(1996).
    [33] H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, Int. Rev. Phys. Chem. 24, 191(2005).
    [34] W. Gan, B. H. Wu, Z. Zhang, Y. Guo, and H. F. Wang, J. Phys. Chem. C 111, 8716(2007).
    [35] D. S. Zheng, Y. Wang, A. A. Liu, and H. F. Wang, Int. Rev. Phys. Chem. 27, 629(2008).
    [36] Y. R. Shen, Annu. Rev. Phys. Chem. 40, 327(1989).
    [37] H. T. Bian, R. R. Feng, Y. Y. Xu, Y. Guo, and H. F. Wang, Phys. Chem. Chem. Phys. 10, 4920(2008).
    [38] C. Hirose, N. Akamatsu, and K. Domen, Appl. Spectrosc. 46, 1051(1992).
    [39] W. Gan, B. H. Wu, H. Chen, Y. Guo, and H. F. Wang, Chem. Phys. Lett. 406, 467(2005).
    [40] M. A. Van Der Veen, V. K. Valev, T. Verbiest, and D. E. De Vos, Langmuir 25, 4256(2009).
    [41] A. Liu, L. Lin, Y. Lin, and Y. Guo, J. Phys. Chem. C 117, 1392(2013).
    [42] H. T. Bian, Ph. D Dissertation, Beijing:Institute of Chemistry, Chinese Academy of Science, No.200518003208132. (2005).
    [43] G. J. Simpson and K. L. Rowlen, J. Am. Chem. Soc. 121, 2635(1999).
    [44] A. Goebel and K. Lunkenheimer, Langmuir 13, 369(1997).
    [45] H. Fang, W. Wu, Y. Sang, S. Chen, X. Zhu, L. Zhang, Y. Niu, and W. Gan, RSC Adv. 5, 23578(2015).
    [46] Y. Sang, F. Yang, S. Chen, H. Xu, S. Zhang, Q. Yuan, and W. Gan, J. Chem. Phys. 142, 224704(2015).
    [47] T. Nagasaki, S. Tamagaki, and K. Ogino, Chem. Lett. 717(1997).
    [48] F. Vera, J. Barberá, P. Romero, J. L. Serrano, M. B. Ros, and T. Sierra, Angew. Chem. 122, 5030(2010).
    [49] W. K. Zhang, H. F. Wang, and D. S. Zheng, Phys. Chem. Chem. Phys. 8, 4041(2006).
    [50] G. J. Simpson and K. L. Rowlen, Anal. Chem. 72, 3399(2000).
    [51] G. M. Hale and M. R. Querry, Appl. Opt. 12, 555(1973).
    [52] J. Jasny, B. Nickel, and P. Borowicz, JOSA B 21, 729(2004).
    [53] G. Cnossen, K. E. Drabe, and D. A. Wiersma, J. Chem. Phys. 97, 4512(1992).
    [54] R. M. Plocinik and G. J. Simpson, Anal. Chim. Acta. 496, 133(2003).
    [55] T. F. Heinz, H. W. K. Tom, and Y. R. Shen, Phys. Rev. A 28, 1883(1983).
    [56] T. G. Zhang, C. H. Zhang, and G. K. Wong, J. Opt. Soc. Am. B 7, 902(1990).
    [57] R. W. Munn, J. Chem. Phys. 113, 8774(2000).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(687) PDF downloads(812) Cited by()

Proportional views
Related

Orientation Angle of Molecules at Hexadecane-Water Interface Studied with Total Internal Reflection Second Harmonic Generation

doi: 10.1063/1674-0068/29/cjcp1605111

Abstract: The orientation angle is an important parameter that reflects the structure of molecules at interfaces. In order to obtain this parameter, second order nonlinear spectroscopic techniques including second harmonic generation (SHG) and sum frequency generation-vibrational spectroscopy (SFG-VS) have been successfully applied through analysis of the nonlinear signal from various polarizations. In some SHG and SFG-VS experiments, total internal reflection (TIR) configuration has been adopted to get enhanced signals. However, the reports on the detailed procedure of the polarization analysis and the calculation of the orientation angle of interfacial molecules under TIR configuration are still very few. In this paper, we measured the orientation angles of two molecules at the hexadecane-water interface under TIR and Non-TIR experimental configurations. The results measured from polarization analysis in TIR configuration consist with those obtained from Non-TIR configuration. This work demonstrates the feasibility and accuracy of polarization analysis in the determination of the orientation angle of molecules at the interfaces under TIR-SHG configuration.

Li-bo Zhang, Hui Fang, Shun-li Chen, Xue-feng Zhu, Wei Gan. Orientation Angle of Molecules at Hexadecane-Water Interface Studied with Total Internal Reflection Second Harmonic Generation[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 650-656. doi: 10.1063/1674-0068/29/cjcp1605111
Citation: Li-bo Zhang, Hui Fang, Shun-li Chen, Xue-feng Zhu, Wei Gan. Orientation Angle of Molecules at Hexadecane-Water Interface Studied with Total Internal Reflection Second Harmonic Generation[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 650-656. doi: 10.1063/1674-0068/29/cjcp1605111
Reference (57)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return