Hui-li Liu, Guang-ming Liu, Guang-zhao Zhang. Modulation of Self-healing of Polyion Complex Hydrogel by Ion-specific Effects[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 725-728. doi: 10.1063/1674-0068/29/cjcp1605109
Citation: Hui-li Liu, Guang-ming Liu, Guang-zhao Zhang. Modulation of Self-healing of Polyion Complex Hydrogel by Ion-specific Effects[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 725-728. doi: 10.1063/1674-0068/29/cjcp1605109

Modulation of Self-healing of Polyion Complex Hydrogel by Ion-specific Effects

doi: 10.1063/1674-0068/29/cjcp1605109
  • Received Date: 2016-05-13
  • Rev Recd Date: 2016-05-24
  • We have prepared polyion complex (PIC) hydrogel consisting of poly(3-(methacryloylami no) propyl-trimethylamonium chloride) and poly(sodium p-styrenesulfonate) polyelectrolytes via a two-step polymerization procedure and have investigated specific ion effects on the selfhealing of the PIC hydrogel. Our study demonstrates that the mechanical properties of the PIC hydrogel are strongly dependent on the type of the ions doped in the hydrogel. The ion-specific effects can be used to modulate the self-healing efficiency of the PIC hydrogel. As the doped anions change from kosmotrops to chaotropes, the self-healing efficiency of the PIC hydrogel increases. A more chaotropic anion has a stronger ability to break the ionic bonds formed within the hydrogel, leading to a higher efficiency during the healing.
  • 加载中
  • [1] R. P. Wool, Soft Matter 4, 400(2008).
    [2] S. D. Bergman and F. Wudl, J. Mater. Chem. 18, 41(2008).
    [3] M. D. Hager, P. Greil, C. Leyens, S. van der Zwaag, and U. S. Schubert, Adv. Mater. 22, 5424(2010).
    [4] S. Burattini, B. W. Greenland, D. Chappell, H. M. Colquhoun, and W. Hayes, Chem. Soc. Rev. 39, 1973(2010).
    [5] A. B. South and L. A. Lyon, Angew. Chem. 122, 779(2010).
    [6] H. H. Hariri and J. B. Schlenoff, Macromolecules 43, 8656(2010).
    [7] A. S. Hoffman, Adv. Drug Delivery Rev. 64, 18(2012).
    [8] Y. M. Chen, N. Shiraishi, H. Satokawa, A. Kakugo, T. Narita, J. P. Gong, Y. Osada, K. Yamamoto, and J. Ando, Biomaterials 26, 4588(2005).
    [9] Y. M. Chen, R. Ogawa, A. Kakugo, Y. Osada, and J. P. Gong, Soft Matter 5, 1804(2009).
    [10] H. J. Kwon, K. Yasuda, Y. Ohmiya, K. I. Honma, Y. M. Chen, and J. P. Gong, Acta Biomaterialia 6, 494(2010).
    [11] D. W. Scharp, N. S. Mason, and R. E. Sparks, World J. Surg. 8, 221(1984).
    [12] K. Burczak, E. Gamian, and A. Kochman, Biomaterials 17, 2351(1996).
    [13] K. Yasuda, N. Kitamura, J. P. Gong, K. Arakaki, H. J. Kwon, S. Onodera, Y. M. Chen, T. Kurokawa, F. Kanaya, and Y. Ohmiya, Macromol. Biosci. 9, 307(2009).
    [14] A. Phadke, C. Zhang, B. Arman, C. C. Hsu, R. A. Mashelkar, A. K. Lele, M. J. Tauber, G. Arya, and S. Varghese, Proc. Natl. Acad. Sci. 109, 4383(2012).
    [15] K. Haraguchi, K. Uyama, and H. Tanimoto, Macromol. Rapid Commun. 32, 1253(2011).
    [16] D. C. Tuncaboylu, M. Sari, W. Oppermann, and O. Okay, Macromolecules 44, 4997(2011).
    [17] H. Bodugoz-Senturk, C. E. Macias, J. H. Kung, and O. K. Muratoglu, Biomaterials 30, 589(2009).
    [18] J. L. Drury and D. J. Mooney, Biomaterials 24, 4337(2003).
    [19] F. T. Moutos, L. E. Freed, and F. Guilak, Nat. Mater. 6, 162(2007).
    [20] F. Luo, T. L. Sun, T. Nakajima, T. Kurokawa, Y. Zhao, K. Sato, A. B. Ihsan, X. Li, H. Guo, and J. P. Gong, Adv. Mater. 27, 2722(2015).
    [21] F. Luo, T. L. Sun, T. Nakajima, T. Kurokawa, Y. Zhao, K. Sato, A. B. Ihsan, X. Li, H. Guo, and J. P. Gong, Adv. Mater. 27, 2722(2015).
    [22] A. Reisch, E. Roger, T. Phoeung, C. Antheaume, C. Orthlieb, F. Boulmedais, P. Lavalle, J. B. Schlenoff, B. Frisch, and P. Schaaf, Adv. Mater. 26, 2547(2014).
    [23] R. A. Ghostine, R. F. Shamoun, and J. B. Schlenoff, Macromolecules 46, 4089(2013).
    [24] W. Kunz, Curr. Opin. Colloid Interface Sci. 15, 34(2010).
    [25] T. Wang, X. W. Wang, Y. C. Long, G. M. Liu, and G. Z. Zhang, Langmiur 29, 6588(2013).
    [26] K. D. Collins, Methods 34, 300(2004).
    [27] X. M. Xing, L. W. Li, T. Wang, Y. W. Ding, G. M. Liu, and G. Z. Zhang, J. Mater. Chem. A 2, 11049(2014).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(896) PDF downloads(609) Cited by()

Proportional views
Related

Modulation of Self-healing of Polyion Complex Hydrogel by Ion-specific Effects

doi: 10.1063/1674-0068/29/cjcp1605109

Abstract: We have prepared polyion complex (PIC) hydrogel consisting of poly(3-(methacryloylami no) propyl-trimethylamonium chloride) and poly(sodium p-styrenesulfonate) polyelectrolytes via a two-step polymerization procedure and have investigated specific ion effects on the selfhealing of the PIC hydrogel. Our study demonstrates that the mechanical properties of the PIC hydrogel are strongly dependent on the type of the ions doped in the hydrogel. The ion-specific effects can be used to modulate the self-healing efficiency of the PIC hydrogel. As the doped anions change from kosmotrops to chaotropes, the self-healing efficiency of the PIC hydrogel increases. A more chaotropic anion has a stronger ability to break the ionic bonds formed within the hydrogel, leading to a higher efficiency during the healing.

Hui-li Liu, Guang-ming Liu, Guang-zhao Zhang. Modulation of Self-healing of Polyion Complex Hydrogel by Ion-specific Effects[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 725-728. doi: 10.1063/1674-0068/29/cjcp1605109
Citation: Hui-li Liu, Guang-ming Liu, Guang-zhao Zhang. Modulation of Self-healing of Polyion Complex Hydrogel by Ion-specific Effects[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 725-728. doi: 10.1063/1674-0068/29/cjcp1605109
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return