Ai-ai Shen, Yi-lin Cao. Adsorption and Decomposition of NH3 on Ni/Pt(111) and Ni/WC(001) Surfaces: A First-Principles Study[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 710-716. doi: 10.1063/1674-0068/29/cjcp1604082
Citation: Ai-ai Shen, Yi-lin Cao. Adsorption and Decomposition of NH3 on Ni/Pt(111) and Ni/WC(001) Surfaces: A First-Principles Study[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 710-716. doi: 10.1063/1674-0068/29/cjcp1604082

Adsorption and Decomposition of NH3 on Ni/Pt(111) and Ni/WC(001) Surfaces: A First-Principles Study

doi: 10.1063/1674-0068/29/cjcp1604082
  • Received Date: 2016-04-18
  • Rev Recd Date: 2016-05-31
  • Density functional theory was used to study the NH3 behavior on Ni monolayer covered Pt(111) and WC(001). The electronic structure of the surfaces, and the adsorption and decomposition of NH3 were calculated and compared. Ni atoms in the monolayer behave different from that in Ni(111). More dz2 electrons of Ni in monolayer covered systems were shifted to other regions compared to Ni(111), charge density depletion on this orbital is crucial to NH3 adsorption. NH3 binds more stable on Ni/Pt(111) and Ni/WC(001) than on Ni(111), the energy barriers of the first N-H bond scission were evidently lower on Ni/Pt(111) and Ni/WC(001) than on Ni(111), these are significant to NH3 decomposition. N recombination is the rate-limiting step, high reaction barrier implies that N2 is produced only at high temperatures. Although WC has similar properties to Pt, differences of the electronic structure and catalytic activities are observed for Ni/Pt(111) and Ni/WC(001), the energy barrier for the rate-determined step increases on Ni/WC(001) instead of decreasing on Ni/Pt(111) when compared to Ni(111). To design cheaper and better catalysts, reducing the N recombination barrier by modifying Ni/WC(001) is a critical question to be solved.
  • 加载中
  • [1] A. Klerke, C. H. Christensen, J. K. Norskov, and T. Vegge, J. Mater. Chem. 18, 2304(2008).
    [2] M. R. Rahimpour and A. Asgari, Int. J. Hydrogen Energy 34, 5795(2009).
    [3] S. Appari, V. M. Janardhanan, S. Jayanti, L. Maier, S. Tischer, and O. Deutschmann, Chem. Eng. Sci. 66, 5184(2011).
    [4] S. F. Yin, B. Q. Xu, X. P. Zhou, and C. T. Au, App. Catal. A 277, 1(2004).
    [5] A. Boisen, S. Dahl, J. K. Norskov, and C. H. Christensen, J. Catal. 230, 309(2005).
    [6] T. V. Choudhary, C. Sivadinarayana, and D. W. Goodman, Catal. Lett. 72, 197(2001).
    [7] C. Egawa, T. Nishida, S. Naito, and K. Tamaru, J. Chem. Soc., Faraday Trans. 80, 1595(1984).
    [8] F. Hayashi, Y. Toda, Y. Kanie, M. Kitano, Y. Inoue, T. Yokoyama, M. Hara, and H. Hosono, Chem. Sci. 4, 3124(2013).
    [9] J. C. Ganley, F. S. Thomas, E. G. Seebauer, and R. I. Masel, Catal. Lett. 96, 117(2004).
    [10] J. Zhang, H. Y. Xu, X. L. Jin, Q. J. Ge, and W. Z. Li, Appl. Catal. A 290, 87(2005).
    [11] H. C. Liu, H. Wang, J. H. Shen, Y. Sun, and Z. M. Liu, Appl. Catal. A 337, 138(2008).
    [12] Y. M. Zhang, X. Z. Xiao, Y. L. Cao, Y. Y. Cai, and J. J. Wang, Int. J. Hydrogen Energy 38, 2965(2013).
    [13] D. A. Hansgen, D. G. Vlachos, and J. G. Chen, Nat. Chem. 2, 484(2010).
    [14] J. Zhang, H. Y. Xu, Q. J. Ge, and W. Z. Li, Catal. Commun. 7, 148(2006).
    [15] M. Grunze, M. Golze, R. K. Driscoll, and P. A. Dowben, J. Vac. Sci. Tech. 18, 611(1981).
    [16] D. Chrysostomou, J. Flowers, and F. Zaera, Surf. Sci. 439, 34(1999).
    [17] C. W. Seabury, T. N. Rhodin, R. J. Purtell, and R. P. Merrill, Surf. Sci. 93, 117(1980).
    [18] P. M. Gundry, J. Haber, and F. C. Tompkins, J. Catal. 1, 363(1962).
    [19] S. Stolbov and T. S. Rahman, J. Chem. Phys. 123, 204716(2005).
    [20] X. Duan, G. Qian, Y. Liu, J. Ji, X. Zhou, D. Chen, and W. Yuan, Fuel Proc. Tech. 108, 112(2013).
    [21] X. Duan, G. Qian, C. Fan, Y. Zhu, X. Zhou, D. Chen, and W. Yuan, Surf. Sci. 606, 549(2012).
    [22] X. Duan, J. Ji, G. Qian, C. Fan, Y. Zhu, X. Zhou, D. Chen, and W. Yuan, J. Mol. Catal. A 357, 81(2012).
    [23] L. Wang, Y. Zhao, C. Y. Liu, W. M. Gong, and H. C. Guo, Chem. Commun. 49, 3787(2013).
    [24] R. B. Levy and M. Boudart, Science 18, 1547(1973).
    [25] H. H. Hwu and J. G. Chen, Chem. Rev. 105, 185(2005).
    [26] M. P. Humbert, C. A. Menning, and J. G. Chen, J. Catal. 271, 132(2010).
    [27] G. Kresse and J. Hafner, J. Phys.:Condens. Matter 6, 8245(1994).
    [28] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169(1996).
    [29] P. E. Blöchl, Phys. Rev. B 50, 17953(1994).
    [30] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865(1996).
    [31] C. Kittel, Introduction to Solid State Physics, 7th Edn., New York:John Willy and Sons, (2005).
    [32] D. A. Hansgen, D. G. Vlachos, and J. G. Chen, Surf. Sci. 605, 2055(2011).
    [33] L. E. Toth, Transition Metal Carbides and Nitrides, New York:Academic press, (1971).
    [34] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188(1976).
    [35] R. A. Olsen, G. J. Kroes, G. Henkelman, A. Arnaldsson, and H. Jonsson, J. Chem. Phys. 121, 9776(2004).
    [36] T. A. Manz and N. G. Limas,DDEC6:A Method for Computing Even-Tempered Net Atomic Charges in Periodic and Nonperiodic Materials, arXiv:1512.08270.
    [37] W. Guo and D. G. Vlachos, Nat. Commun. 6, 8619(2015).
    [38] J. R. Kitchin, N. A. Khan, M. A. Barteau, J. G. Chen, B. Yakshinksiy, and T. E. Madey, Surf. Sci. 544, 295(2003).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(774) PDF downloads(634) Cited by()

Proportional views
Related

Adsorption and Decomposition of NH3 on Ni/Pt(111) and Ni/WC(001) Surfaces: A First-Principles Study

doi: 10.1063/1674-0068/29/cjcp1604082

Abstract: Density functional theory was used to study the NH3 behavior on Ni monolayer covered Pt(111) and WC(001). The electronic structure of the surfaces, and the adsorption and decomposition of NH3 were calculated and compared. Ni atoms in the monolayer behave different from that in Ni(111). More dz2 electrons of Ni in monolayer covered systems were shifted to other regions compared to Ni(111), charge density depletion on this orbital is crucial to NH3 adsorption. NH3 binds more stable on Ni/Pt(111) and Ni/WC(001) than on Ni(111), the energy barriers of the first N-H bond scission were evidently lower on Ni/Pt(111) and Ni/WC(001) than on Ni(111), these are significant to NH3 decomposition. N recombination is the rate-limiting step, high reaction barrier implies that N2 is produced only at high temperatures. Although WC has similar properties to Pt, differences of the electronic structure and catalytic activities are observed for Ni/Pt(111) and Ni/WC(001), the energy barrier for the rate-determined step increases on Ni/WC(001) instead of decreasing on Ni/Pt(111) when compared to Ni(111). To design cheaper and better catalysts, reducing the N recombination barrier by modifying Ni/WC(001) is a critical question to be solved.

Ai-ai Shen, Yi-lin Cao. Adsorption and Decomposition of NH3 on Ni/Pt(111) and Ni/WC(001) Surfaces: A First-Principles Study[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 710-716. doi: 10.1063/1674-0068/29/cjcp1604082
Citation: Ai-ai Shen, Yi-lin Cao. Adsorption and Decomposition of NH3 on Ni/Pt(111) and Ni/WC(001) Surfaces: A First-Principles Study[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 710-716. doi: 10.1063/1674-0068/29/cjcp1604082
Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return