Pei Huang, Li-feng Yan. Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 742-748. doi: 10.1063/1674-0068/29/cjcp1604073
Citation: Pei Huang, Li-feng Yan. Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 742-748. doi: 10.1063/1674-0068/29/cjcp1604073

Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst

doi: 10.1063/1674-0068/29/cjcp1604073
  • Received Date: 2016-04-13
  • Rev Recd Date: 2016-05-07
  • Catalytic degradation of cellulose to chemicals is an attracting topic today for the conversion of biomass, and the development of novel catalysts is a key point. Since metal-organic frameworks (MOFs) possess uniform, continuous, and permeable channels, they are valuable candidate as catalysts. Here, a new 3D MOF/graphene catalyst was prepared by in situ growth of the zeolitic imidazolate frameworks (ZIF-8) nanoparticles inside the pore of an as-formed 3D reduced graphene oxide (rGO) hydrogel. The ZIF-8/rGO nanocomposite owns both micropores and mesopores with large specific surface area and plenty of acids sites, which is an idea catalyst for biomass degradation. Cellulose was dissolved in alkaline aqueous solution at first, and then it was degraded efficiently over the new catalyst under hydrothermal condition. The conversion reaches 100% while the main products are formic acid with a maximum yield of 93.66%. In addition, the catalyst can be reused with high activity.
  • 加载中
  • [1] A. Corma, S. Iborra, and A. Velty, Chem. Rev. 107, 2411(2007).
    [2] J. J. Bozell, Science 329, 522(2010).
    [3] D. R. Dodds and R. A. Gross, Science 318, 1250(2007).
    [4] C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, and M. Poliakoff, Science 337, 695(2012).
    [5] M. G. Adsul, A. J. Varma, and D. V. Gokhale, Green Chem. 9, 58(2007).
    [6] M. S. Holm, S. Saravanamurugan, and E. Taarning, Science 328, 602(2010).
    [7] E. J. Cho, S. Jung, H. J. Kim, Y. G. Lee, K. C. Nam, H. J. Lee, and H. J. Bae, Chem. Commun. 48, 886(2012).
    [8] M. Niu, Y. Hou, S. Ren, W. Wu, and K. N. Marsh, Green Chem. 17, 453(2015).
    [9] M. Grasemann and G. Laurenczy, Energy Environ. Sci. 5, 8171(2012).
    [10] F. Jin, J. Yun, G. Li, A. Kishita, K. Tohji, and H. Enomoto, Green Chem. 10, 612(2008).
    [11] J. Xu, H. Zhang, Y. Zhao, Z. Yang, B. Yu, H. Xu, and Z. Liu, Green Chem. 16, 4931(2014).
    [12] J. Xu, Y. Zhao, H. Xu, H. Zhang, B. Yu, L. Hao, and Z. Liu, Appli. Cat. B 154, 267(2014).
    [13] J. Zhang, M. Sun, and Y. Han, Rsc Adv. 4, 35463(2014).
    [14] J. Reichert, B. Brunner, A. Jess, P. Wasserscheid, and J. Albert, Energy Environ. Sci. 8, 2985(2015).
    [15] J. L. Song, H. L. Fan, J. Ma, and B. X. Han, Green Chem. 15, 2619(2013).
    [16] S. D. Zhu, Y. X. Wu, Q. M. Chen, Z. N. Yu, C. W. Wang, S. W. Jin, Y. G. Ding, and G. Wu, Green Chem. 8, 325(2006).
    [17] J. P. Zhou and L. N. Zhang, Polym. J. 32, 866(2000).
    [18] J. P. Zhou, L. N. Zhang, and J. Cai, J. Polym. Sci. Part B 42, 347(2004).
    [19] N. Sun, H. Rodriguez, M. Rahman, and R. D. Rogers, Chem. Commun. 47, 1405(2011).
    [20] C. Z. Li, Q. Wang, and Z. K. Zhao, Green Chem. 10, 177(2008).
    [21] L. L. Zhou, R. J. Liang, Z. W. Ma, T. H. Wu, and Y. Wu, Bioresour. Technol. 129, 450(2013).
    [22] F. J. Liu, R. K. Kamat, I. Noshadi, D. Peck, R. S. Parnas, A. M. Zheng, C. Z. Qi, and Y. Lin, Chem. Commun. 49, 8456(2013).
    [23] L. Yan and X. Qi, Acs Sustainable Chem. Eng. 2, 897(2014).
    [24] Z. Jiang, Z. Zhang, J. Song, Q. Meng, H. Zhou, Z. He, and B. Han, ACS Sustainable Chem. Eng. 4, 305(2016).
    [25] J. Chen, R. Liu, Y. Guo, L. Chen, and H. Gao, Acs Catalysis 5, 722(2015).
    [26] A. Corma, H. García, and F. X. Llabrés í Xamena, Chem. Rev. 110, 4606(2010).
    [27] M. Jahan, Z. Liu, and K. P. Loh, Adv. Funct. Mater. 23, 5363(2013).
    [28] Y. J. Min, W. Z. Li, G. Lin, L. S. Jia, W. H. Li, Z. W. Tao, and J. Qing, Adv. Energy Mater. 5, 1500107(2015).
    [29] Y. Z. Chen, G. Cai, Y. Wang, Q. Xu, S. H. Yu, and H. L. Jiang, Green Chem. 18, 1212(2016).
    [30] W. Chen and L. Yan, Nanoscale 3, 3132(2011).
    [31] L. Zhang, Y. Mao, J. P. Zhou, and J. Cai, Ind. Eng. Chem. Res. 44, 522(2005).
    [32] W. Chen, S. Li, C. Chen, and L. Yan, Adv. Mater. 23, 5679(2011).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(975) PDF downloads(969) Cited by()

Proportional views
Related

Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst

doi: 10.1063/1674-0068/29/cjcp1604073

Abstract: Catalytic degradation of cellulose to chemicals is an attracting topic today for the conversion of biomass, and the development of novel catalysts is a key point. Since metal-organic frameworks (MOFs) possess uniform, continuous, and permeable channels, they are valuable candidate as catalysts. Here, a new 3D MOF/graphene catalyst was prepared by in situ growth of the zeolitic imidazolate frameworks (ZIF-8) nanoparticles inside the pore of an as-formed 3D reduced graphene oxide (rGO) hydrogel. The ZIF-8/rGO nanocomposite owns both micropores and mesopores with large specific surface area and plenty of acids sites, which is an idea catalyst for biomass degradation. Cellulose was dissolved in alkaline aqueous solution at first, and then it was degraded efficiently over the new catalyst under hydrothermal condition. The conversion reaches 100% while the main products are formic acid with a maximum yield of 93.66%. In addition, the catalyst can be reused with high activity.

Pei Huang, Li-feng Yan. Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 742-748. doi: 10.1063/1674-0068/29/cjcp1604073
Citation: Pei Huang, Li-feng Yan. Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst[J]. Chinese Journal of Chemical Physics , 2016, 29(6): 742-748. doi: 10.1063/1674-0068/29/cjcp1604073
Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return