2011 Vol. 24, No. 2

Review
Content
2011, 24(2): 0-0. doi: 10.1088/1674-0068/23/2/1-1
The predissociation of the v=9 level in the b3Πg state by the c3g+ state of helium eximer(He2) was studied based on the newly observed (9, 3) band in the b3Πg-a3u+ system inthe region of 12065~12445 cm-1 employing optical heterodyne-concentration modulationabsorption spectroscopy. With the help of the previous potential energy curves and molecular constants of He2, the corresponding predissociation mechanism for the b3Πg (v=9) state was analyzed. An RKR potential energy curve of b3Πg and an ab initio potential curve of c3g+ were used to calculate the predissociation linewidths that show basic agreement withobservations, which can quantitatively explain the experiments.
Photodissociation of jet-cooled HOD via the ? state around 124 nm has been studied using the H(D)-atom Rydberg tagging time-of-flight technique. Rotational state resolved action spectrum and the product translational energy distribution spectra have been recorded for both D+OH and H+OD dissociation channels. Product channel OH/OD branching ratios for the individual ?- X rotational transition have been determined. A comparison is also given with the B- X and ?- X transitions. In addition, the dissociation energy of the OD bond in HOD has been determined accurately to be 41751.3±5 cm-1.
We have investigated properties of the compound LuAlO3:Ce3+ associated with the Ce3+ 4f-5d transition by using the periodic density functional theory. A hybrid functional has been used for the 4f states and a constrained approach has been employed for the excited 5d state. It is found that the average distance between Ce3+ and the eight nearest-neighbor O atoms decrease by 0.05 ?on going from 4f to 5d state. The calculated Stokes shift is in good agreement with experiment. Based on the optimized structure around Ce3+, the energy level scheme of the 5d states has been evaluated using the angular overlap model, in reasonable agreement with experiment.
Photodetachment of H- irradiated by linearly polarized few-cycle laser field is investigated by time-dependent Schr?dinger equation numerically. The photo-electron left-right asym-metry parameter as a function of carrier-envelop (CE) phase of few-cycle pulses is attained. We confirm the asymmetry of photoelectron distribution in H- photodetachment and find that the maximal asymmetry parameter of H- is equal to that of H atom under the same conditions but the corresponding CE phases are quite different. Thus a CE phase shift ap-pears. Compared to that of H atom and field free electron, the zero asymmetry CE phase shift is sensitively affected by Coulomb field. The Coulomb effect on the asymmetry of H- photodetachment mainly behaves in the CE phase shift of H- instead of the amplitude of asymmetry parameter curve.
A new indicator with temperature dependence of the NO3 loss frequency, was developed to study the contribution of NO3 to the oxidation of monoterpenes and NOx removal in the atmosphere. The new indicator arises from the temperature dependence of kinetic constant. The new indicator was applied to data of observation based on differential optical absorp-tion spectroscopy system on the outskirts of Hefei, China. According to the findings, the contribution of monoterpenes to the loss of NO3 was 70%~80%.
Time-resolved electron spin resonance has been used to study quenching reactions between the antioxidant Vitamin C (VC) and the triplet excited states of 9,10-phenanthrenequinone (PAQ) in ethylene glycol-water (EG-H2O) homogeneous and inhomogeneous reversed micelle solutions. Reversed micelle solutions were used to be the models of physiological environment of biological cell and tissue. In PAQ/EG-H2O homogeneous solution, the excited triplet of PAQ (3PAQ*) abstracts hydrogen atom from solvent EG. In PAQ/VC/EG-H2O solution, 3PAQ* abstracts hydrogen atom not only from solvent EG but also from VC. The quenching rate constant of 3PAQ* by VC is close to the diffusion-controlled value of 1.41×108 L/(mol·s). In hexadecyltrimethylammonium bromide (CTAB)/EG-H2O and aerosol OT (AOT)/EG-H2O reversed micelle solutions, 3PAQ* and VC react around the water-oil interface of the reversed micelle. Exit of 3PAQ* from the lipid phase slows down the quenching reaction. For Triton X-100 (TX-100)/EG-H2O reversed micelle solution, PAQ and VC coexist inside the hydrophilic polyethylene glycol core, and the quenching rate constant of 3PAQ* by VC is larger than those in AOT/EG-H2O and CTAB/EG-H2O reversed micelle solutions, even a little larger than that in EG-H2O homogeneous solution. The strong emissive chemically in-duced dynamic electron polarization of As- resulted from the effective TM spin polarization transfer in hydrogen abstraction of 3PAQ* from VC.
Density functional theory calculations are performed to study the structural, electronic and magnetic properties of hexagonal NiAs type and cubic zinc blende type MnSb structure and interface of zinc blende MnSb with GaSb(001). We used generalized gradiant approxima-tion to calculate the exchange-correlation term in bulk and interface determination. The zinc blende structure of MnSb is found to be ferromagnetic half-metal with a total moment of 4μB per formula unit. Results show that the half-metallicity character is preserved at MnSb/GaSb(001) interface. The magnetic moment of Mn atom in interface is reduced and the magnetic moment of the interface Sb atom is equal to the average of the corresponding bulk values in two sides of the interface. The band alignment properties are also computed and a rather large minority valance band o?set of about 1.25 eV is obtained in this hetero-junction.
Considering the dielectric confinement effect on excitonics of PbSe quantum dots (QDs), a correction factor in the wave function was introduced to propose a new band gap calculation model for QDs. The modified model showed great consistency with the experimental data, especially in small size range. According to the variation of confined barrier, the band gap calculation model of PbSe QDs was analyzed in different solvents. The calculating results showed that the modified model was almost solvent-independent, which was consistent with our experimental results and related reports.
By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complete energy matrix based on the double spin-orbit coupling parameter model for configuration ions in a tetragonal ligand field. The results indicate that the contribution of ligand to spin-orbit coupling interaction should be considered for our studied systems. Moreover, the relationships between D and the spin-obit coupling coefficients as well as the average parameter and the divergent parameter are discussed.
The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theory with the B3LYP and BhandHLYP methods. The optimized geometries of neutral, radical cation, radical and anion forms were obtained at the B3LYP/6-31G(d) level, in which it was found that all the most stable conformations contain intramolecular hydrogen bonds. The same results were obtained from the MP2 method. The homolytic O-H bond dissociation enthalpy and the adiabatic ionization potential of neutral and anion forms for the three new antioxidants and adiabatic electron affinity and H-atom affinity for hydroxyl radical, superoxide anion radical, and hydrogen peroxide radical were determined both in gas phase and in aqueous solution using IEF-PCM and CPCM model with UAHF or Bondi cavity. The antioxidant activities and reactive oxygen species scavenging mechanisms were then discussed, and the results obtained from different methods are consistent. Furthermore, the antioxidant activities are consistent with the experimental findings of the compounds under investigation.
Nanofibrous pyrolusite (β-MnO2) was synthesized. The particle shape changes from nanofibers to nanoparticles after grinding, and the phase structure does not change. The local environment around the central manganese ion has a slight change in nanoparticles related to nanofibers. Fourier transform infrared (FTIR) spectra showed that A2u mode frequency shifts from 514 cm-1 to 574 cm-1 to 617 cm-1 gradually while the particle shape and size change from long nanofibers to short fibers and to nanoparticles. The extra vibra-tional band that is unpredicted by factor group analysis originates from the contribution of A2u mode of the particles with different sizes and shapes in the studied sample. On the basis of Rietveld refinement analysis of XRD profiles and the FTIR spectra, we think that two kinds of MnO6 octahedral geometries, i.e., 4 long+2 short and 4 short+2 long, could exist in pyrolusites synthesized by different route. The maximum vibrational frequency in the FTIR spectra of pyrolusites is sensitive to these micro-structures. Assignment of four vibrational bands in the middle and far infrared region has been made.
The electronic structure and half-metallicity of molecule-based ferromagnet Cr[N(CN)2]2 have been investigated using first-principles with generalized gradient approximation. The total energy, spin-polarized electronic band structure, density of states (DOSs) and spin mag-netic moments were all calculated. The calculations reveal that the compound Cr[N(CN)2]2 is a really half-metallic ferromagnet with a integral magnetic moment of 2.0000 μB per molecule in the optimized lattice constant. Based on the spin distribution and the DOS, it is found that the total magnetic moment is mainly from the Cr2+ with relative small contribution from C and N atoms. The sensitivity of the half-metallicity to small change in lattice constant is also discussed.
Based on the first-principles computational method and the elastic scattering Green's func-tion theory, we have investigated the electronic transport properties of different oligothio-phene molecular junctions theoretically. The numerical results show that the difference of geometric symmetries of the oligothiophene molecules leads to the difference of the contact configurations between the molecule and the electrodes, which results in the difference of the coupling parameters between the molecules and electrodes as well as the delocalization properties of the molecular orbitals. Hence, the series of oligothiophene molecular junctions display unusual conductive properties on the length dependence.
Molecular dynamics simulations have been performed to investigate well-known ener-getic material cyclotrimethylene trinitramine (RDX) crystal, 3-azidomethyl-3-methyloxetane (AMMO) and RDX/AMMO propellant. The results show that the binding energies on differ-ent crystalline surface of RDX changes in the order of (010)>(100)>(001). The interactions between RDX and AMMO have been analyzed by means of pair correlation functions. The mechanical properties of RDX/AMMO propellant, i.e. elastic coefficients, modulus, Cauchypressure, and Poisson's ratio, etc., have been obtained. It is found that mechanical properties are effectively improved by adding some amounts of AMMO polymers, and the overall effect of AMMO on three crystalline surfaces of RDX changes in the order of (100)>(010)>(001). The energetic properties of RDX/AMMO propellant have also been calculated and the results show that compared with the pure RDX crystal, the standard theoretical specific impulse of RDX/AMMO propellant decrease, but they are still superior to those of double base propellant.
Multishell nanotubes of polyaniline and carbon were synthesized via a template approach. A thin layer of MnO2 coated on carbon nanotubes acts as a reactive template for the consequent formation of the polyaniline coating. The polyaniline-carbon nanotubes show enhanced dispersibility in water and can be possibly used as a functional material of electrochemical capacitors with improved performance. The general method operates by coating carbon nanotubes on functional materials such as poly (3,4-ethylenedioxythiophene), polypyrrole, silica, and carbon.
We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregna-tion method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic re-forming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni20/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 oC, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni20/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.
The dissociative electron attachment process for CHCl3 at different electric field have been studied with nitrogen as drift and carrier gas using corona discharge ionization source ion mobility spectrometry (CD-IMS). The corresponding electron attachment rate constants varied from 1.26×10-8 cm3/(molecules s) to 8.24×10-9 cm3/(molecules s) as the electric field changed from 200 V/cm to 500 V/cm. At a fixed electric field in the drift region,the attachment rate constants are also detected at different sample concentration. The ion-molecule reaction rate constants for the further reaction between Cl- and CHCl3 are also detected, which indicates that the technique maybe becomes a new method to research the rate constants between ions and neural molecules. And the reaction rate constants between Cl- and CHCl3 are the first time detected using CD-IMS.
CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 oC. The morphology, composition, crystal structure, optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VIS-NIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3 after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.
A comprehensive analysis of hydrogen/oxygen and hydrocarbon/oxygen counterflow diffu-sion flames has been conducted using corresponding detailed reaction mechanisms. The hydrocarbon fuels contain n-alkanes from CH4 to C16H34. The basic diffusion flame struc-tures are demonstrated, analyzed, and compared. The effects of pressure, and strain rate on the flame behavior and energy-release rate for each fuel are examined systematically. The de-tailed chemical kinetic reaction mechanisms from Lawrence Livermore National Laboratory(LLNL) are employed, and the largest one of them contains 2115 species and 8157 reversible reactions. The results indicate for all of the fuels the flame thickness and heat release rate correlate well with the square root of the pressure multiplied by the strain rate. Under the condition of any strain rate and pressure, H2 has thicker flame than hydrocarbons, while the hydrocarbons have the similar temperature and main products distributions and almost have the same flame thickness and heat release rate. The result indicates that the fuels composed with these hydrocarbons will still have the same flame properties as any pure n-alkane fuel.
A novel N-(2-hydroxy-5-chlorodibenzophenone)-N0-[2-hydroxy-5-azophenyl-benzaldehyde]-1,2-diaminobenzene receptor has been synthesized by simple steps with good yields. The anion recognition properties were studied by ultraviolet-visible spectroscopy. The resultsshowed that the receptor had a higher affinity to F-, AcO-, and H2PO4-, but no evident binding with Cl-, Br-, and I-. Upon addition of the three former anions to the receptors in DMSO, the solution exhibited an obvious color change from colorless to yellow, which could be observed by the naked eye, thus the receptor could act as a fluoride ion sensor even in the presence of other halide ions. The UV-Vis data indicates that a 1:1 stoichiometric complex is formed through hydrogen bonding interactions between receptor and anions.
One-step anodic acetoxylation of benzene to phenyl acetate was studied in acetic acid-water solution using a one-compartment electrochemical cell in galvanostatic mode. Compared to the anhydrous system, the addition of water improved the current efficiency for the electro-synthesis of phenyl acetate. The maximum efficiency reached 4.8% with the selectivity of 96% to phenyl acetate when the electrolysis was carried out under the optimal conditions. The investigation also indicated that the concentration of phenyl acetate increased linearly in 12 h and reached 1.07 g/L with the selectivity of 95%. Cyclic voltammetry experiments showed that the adsorption of benzene at Pt anode enhanced by the addition of water was critical to the formation of phenyl acetate. An activated benzene mechanism was proposed for the anodic acytoxylation, and the analysis of gas products demonstrated that Kolbe reaction was the main side reaction.