
ARTICLE

Oxygen Reduction Reaction Activity of Fe-based Dual-Atom Catalysts with
Different Local Configurations via Graph Neural Representation†

Xueqian Xia, Zengying Ma, Yucheng Huang*

College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of
Education, Anhui Key Laboratory of Molecule-Based Materials, Anhui Carbon Neutrality Engineering
Center, Anhui Normal University, Wuhu 241000, China

(Dated: Received on August 27, 2024; Accepted on September 13, 2024)

 
The performance of proton exchange mem-

brane fuel cells depends heavily on the oxy-

gen reduction reaction (ORR) at the cath-

ode, for which platinum-based catalysts are

currently  the  standard. The high  cost and

limited availability of platinum have driv-

en  the  search  for  alternative  catalysts.
While  FeN4  single-atom  catalysts  have

shown promising potential,  their ORR ac-

tivity needs to be further enhanced. In con-

trast, dual-atom catalysts (DACs) offer not

only higher metal loading but also the abili-

ty  to  break  the  ORR  scaling  relations.
However,  the  diverse  local  structures  and

tunable coordination environments of DACs create a vast chemical space, making large-scale

computational  screening  challenging.  In  this  study, we  developed  a  graph  neural  network

(GNN)-based framework to predict the ORR activity of Fe-based DACs, effectively address-

ing  the challenges posed by variations  in  local catalyst  structures. Our model,  trained on a
dataset of 180 catalysts, accurately predicted the Gibbs free energy of ORR intermediates and

overpotentials,  and  identified  32 DACs with  superior  catalytic  activity  compared  to FeN4

SAC. This approach not only advances the design of high-performance DACs, but also offers a
powerful computational tool that can significantly reduce the time and cost of catalyst devel-

opment, thereby accelerating the commercialization of fuel cell technologies.
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I.  INTRODUCTION

With  the  continuous  growth  of  global  energy  de-

mand,  the development of clean and  renewable energy

technologies has become increasingly urgent [1−3]. Pro-

ton exchange membrane fuel cells (PEMFCs) have gar-

nered  significant  attention  as  a promising  energy  con-

version  technology  due  to  their  high  energy  density,

rapid  refueling  capability,  and  environmental  friendli-

ness  [4, 5].  In  the cathode of PEMFCs,  the oxygen  re-
duction  reaction  (ORR)  is  a  pivotal  electrochemical

process,  and  its  efficiency  directly  affects  the  overall

performance of the cell  [6, 7]. Although Pt-based cata-

lysts  are  currently  considered  to be  the most  effective
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ORR  catalysts,  their  high  cost  and  dependence  on Pt

resources  limit their  large-scale application  [8, 9]. Con-

sequently, the search  for alternatives to Pt, particular-

ly non-noble metal catalysts, has emerged as a research

focal  point.  Single-atom  catalysts  (SACs),  as  a  novel

type of  catalyst, have attracted widespread  interest  in
reactions  such  as ORR  due  to  their  unique  electronic

and  geometric  structures,  nearly  100%  atomic  utiliza-

tion,  high  selectivity,  and  robust  catalytic  activity

[10−14].  In  particular,  FeN4  SACs  are  widely  consid-

ered  to  be  excellent ORR  catalysts,  but  there  is  still
room  for  further optimization of their activity  [15, 16].
For  instance, Li  et  al.  [17] have  successfully  improved

the ORR activity of FeN4 by introducing Co single site
into the second coordination shell.

Moreover,  the  quantity  and  activity  of  active  sites
are crucial in determining the catalytic performance [18,

19]. Dual-atom  catalysts  (DACs), which  represent  the

ultimate limit of small-sized alloys due to their efficient

utilization of metals, have attracted widespread atten-

tion  [19−21].  Compared  to  SACs,  DACs  possess  a

greater  number  of  metallic  active  sites,  higher  metal

loading, and the ability to break the scaling relations of

ORR and adjust the electronic structure of the catalyst.
In  recent  years,  the  combination  of density  functional

theory  (DFT) calculations and machine  learning  (ML)

methods  has  emerged  as  a  powerful  tool  for  screening

and predicting high-performance bimetallic ORR cata-

lysts. Zhao  et  al.  [22] utilized  a DFT-ML  approach  to
evaluate  the  ORR  and  oxygen  evolution  reaction

(OER) performance  of  729 DACs  containing  27 metal

elements, identifying 30 DACs with ORR activity supe-

rior to Pt(111) and 10 DACs with OER activity better

than  RuO2(110).  The  primary  scientific  challenge  for

bimetallic catalysts  is  the precise control of active  site
number and activity, alongside with the optimization of

the electronic structure of the catalyst, to enhance cat-

alytic  performance. Traditional  experimental methods

have  significant  limitations  in  catalyst  screening  and

optimization due to their high cost and time consump-

tion. Although DFT  calculations  can  provide  atomic-

level  details,  their  substantial  computational  resource

requirements preclude  their use  for  large-scale catalyst

screening.  Therefore,  the  integration  of  DFT  calcula-

tions and ML methods has become a powerful  tool  for

addressing this critical scientific issue.
In  this  study, we  introduce a graph neural network

(GNN, DimeNet++  [23, 24])-based  framework  for pre-

dicting the ORR activity of Fe-based DACs. The inno-

vation of this  framework  lies  in  its abilities to take the

geometric  structure  of  the  catalyst  as  input  and  effec-
tively handle DACs with varying configurations, which

poses  a  challenge  for  traditional ML methods.  In  con-

trast to traditional  feature-based algorithms, GNN has

shown better performance  and  interpretability, due  to
the analogy between the constructed data structure and

real  geometric  configurations  and  the  introduction  of

message-passing  processes  [25]. As  an  advanced  artifi-

cial intelligence technique, GNN possesses powerful spa-

tial  structure modeling  capabilities  and  can  learn  the

complex  relationships between  atoms, which  is  crucial

for  understanding  catalyst  activity. Utilizing  the  con-

structed  GNN  model,  we  can  accurately  predict  the

ORR  activity  of Fe-based DACs. The  discovery  of  32

DACs with overpotential lower than that of FeN4 SAC

highlights  the  potential  for  improved  catalytic  perfor-

mance.  Our  research  not  only  advances  the  develop-

ment  of  clean  energy  technologies  but  also  provides  a
novel  and  efficient  computational  tool  for  catalyst de-

sign, which  is promising to significantly reduce the de-

velopment  cycle  and  cost  of  catalysts,  ultimately  pro-

moting  the commercialization process of  fuel cell  tech-

nology. 

II.  COMPUTATIONAL METHOD

All  the  spin-polarized  calculations were  carried  out

using  the  projector-augmented  wave  (PAW)  [26]

method as implemented in the Vienna Ab-initio Simula-

tion Package [27]. We employed VASPKIT for the sub-

sequent  data  processing  [28]. The  electron wave  func-

tion was  expanded with a plane-wave basis  set with a
cutoff  energy  of  400  eV. The  generalized  gradient  ap-

proximation  (GGA)  [29]  in  the  form of Perdew-Burke-

Ernzerhof  (PBE)  [30]  exchange-correlation  functional

was used. The Brillouin zone was sampled with a 3 × 3×
1  Γ-centered  k-point  grid  following  the  scheme  pro-

posed  by Monkhorst  and  Pack  [31]. A  vacuum  space

with thickness of 15 Å was applied along the c direction

to  avoid  the  interaction  between  two  adjacent  image

layers. The DFT-D3 [32] method with the considering of

van der Waals (vdW) corrections proposed by Grimme

et  al. was  used. The  conjugated  gradient  scheme was

adopted  for the geometric structure optimizations, and

the convergence criterions for energy and force were set
to  be  10–5  eV  and  10–2  eV/Å.  All  models  were  con-
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structed based on a (3 × 6) graphene supercell with met-

al and nitrogen dopants. The Gibbs free energy change

of chemical reaction is defined as follows: 

∆G = ∆E +∆ZPE− T∆S

where  ΔE  is  the  reaction  energy  that  can be  obtained

from DFT calculations, ΔZPE and ΔS represent the ze-
ro-point  energy  and  the  entropy  change  of  each  reac-

tion step at temperature (T = 298.15 K), respectively. 

III.  RESULTS AND DISCUSSION

Although  catalysts  based  on  FeN4  motifs  have

demonstrated  excellent  catalytic  performance  in ORR

applications,  their  activity  still  falls  short  of  the  stan-

dards required  for practical use  [33, 34]. To  further en-

hance the catalytic efficiency of the Fe sites, we consid-

ered  the  strategy  of  introducing  diatomic  sites, which

not only maintains the stability of the Fe sites but also

allows  for  fine-tuning of the ORR activity through the

introduction of a second transition metal atom. In con-

siderations of the economic viability and potential high-

performance  for  practical  applications,  we  selected

three common transition metals: Ni, Cu, and Zn. Based

on  this  strategy,  we  designed  four  representative  di-

atomic FeM-NC configurations (DAC-A to DAC-D) as

shown  in FIG.  1. Among  them, DAC-A, DAC-B,  and

DAC-C exhibit a FeM-N6 coordination structure, while

DAC-D presents  a FeM-N7  coordination  environment.
Previous studies have confirmed  that  the atoms  in  the

first  coordination  sphere  have  a  decisive  influence  on

catalytic  activity  [35,  36]. Therefore, we  precisely  ad-

justed the metal coordination environment of the FeM-

DAC by replacing the N atoms in the first coordination

sphere with O/B/C  atoms. This  approach  resulted  in
2856  different  configuration  models,  from  which  180

catalyst  structures were  randomly  selected  for prelimi-

nary study and subjected to DFT calculations.
Building upon the established model, we  further  in-

vestigated  the  key  determinant  of  catalyst  reactivity:

the  adsorption  energy  of  intermediates.  In  the  ORR

process,  the OOH, O, and OH  intermediates play  cru-

cial roles. Consequently, we conducted adsorption ener-

gy  calculations  for  these  critical  intermediates  on  the

180  catalysts  selected,  amassing  a  dataset  of  540  ad-

sorption  energy  data  points  (FIG.  2).  In FIG.  2(a),  it
can be observed that the values of ΔGOOH are predomi-

nantly  within  the  range  of  2.5−4.0  eV.  In  FIG.  2(b),

ΔGO  values  are mostly  found  between  0.5  and1.5  eV,

while  in  FIG.  2(c),  the  majority  of  ΔGOH  values  fall

within 0−1 eV. The overpotential  in ORR  is of  signifi-

cant  importance;  therefore, we  calculated  the  overpo-

tential  for the entire ORR hydrogenation reaction pro-

cess.  It was  found  that  the  overpotentials  are  largely

within the range of 0.5–1 V, indicating that these cata-

lysts exhibit poor ORR performance (FIG. 2(d)). Con-

sequently,  it  is  imperative  to  utilize machine  learning

methods to explore the entire chemical space  in search

of effective ORR catalysts.
Given the significant structural variations among the

constructs,  traditional  descriptor  methods  and  atom-

based machine learning models were found to be inade-

quate  in characterizing  these  structures. Therefore, we

turned to the advanced technique of graph neural net-

works, which can convert atomic structures  into graph

representations, well-suited  for handling  the  structural

diversity  present  in  our  dataset.  The  basic  principles

and  current  application  status  of  the GNN  can be  re-
ferred  to  a  recent  review  article  [37].  By  applying

DimeNet++ method, we were  able  to  effectively  cap-

ture and interpret the underlying chemical and catalyt-

ic  features  of  these  complex  structures, providing pro-

found insights and guidance for catalyst design and op-

timization. Moreover,  the GNN model  enables  predic-

tion of unknown catalyst structures, offering directions

for experimental research and further advancing the de-

velopment  and  application  of  ORR  catalysts.  FIG.  3
presents the training results  for the adsorption  free en-

 

FIG.  1   Different structures of DACs.
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ergies of the OOH, O, and OH intermediates, as well as

the  overpotential,  using  the  DimeNet++  model.  We

utilized unoptimized slab structures without intermedi-

ate adsorption as graph  inputs, which  significantly  re-

 

FIG.  2   The adsorption energy distributions of (a) ΔGOOH, (b) ΔGO, (c) ΔGOH; and (d) overpotential η.
 

FIG.  3   The adsorption energy of  (a) ΔGOOH,  (b) ΔGO,  (c) ΔGOH,  and (d)  overpotential η with DFT and DimeNet++
prediction.
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duces  computational  effort  compared  to  using  opti-

mized structures [38]. The adsorption energies and over-

potential were targeted properties for dataset construc-

tion.  Employing  10-fold  cross-validation  with  the

sklearn  library  [39], we  achieved mean  absolute  errors

(MAEs) of 0.13 eV  for the training set and 0.17 eV  for

the test set on the OOH intermediate (FIG. 3(a)), indi-

cating  that  the  model  is  able  to  accurately  predict

ΔGOOH  on  FeM DACs.  FIG.  3  (b)  and  (c)  show  the

Gibbs  adsorption  free  energies  for  O  and  OH,  with

MAEs of 0.13 eV (0.19 eV) and 0.11 eV (0.16 eV) for the

training (test) sets, respectively. Our machine  learning

outcomes suggest that the model effectively predicts the

ORR  reaction  process  on  FeM  DACs.  Consequently,

the overpotential, closely  related  to ORR activity, can

also be predicted by our model. In FIG. 3(d), the MAEs

for  the  overpotential  on  the  training  and  test  sets  are

0.09 V and 0.14 V, respectively, demonstrating the ca-

pability of model in direct correlation with ORR perfor-

mance.
The results show that our model can accurately pre-

dict  the ORR  activity  of  Fe-based DACs,  facilitating

the exploration of unlabeled chemical space. FIG. 4 out-

lines  the  machine  learning  workflow,  starting  with

training  the  DimeNet++  model  on  720  DFT  data

points  to  achieve high  accuracy. This model was  then

used to predict the ORR  intermediate Gibbs  free ener-

gies of adsorption and overpotentials  for the remaining

2676 structures.
The  predictions  for  ΔGOOH,  ΔGO,  and  ΔGOH  are

shown  in FIGs. S1–S3 (Supplementary materials, SM).
FIG.  5  illustrates  the  predicted  overpotentials  for  all

unlabeled  structures,  where  the  majority  of  catalysts

exhibit  high  values  ranging  from  1.0 V  to  2.0 V. No-

tably, 32 FeN4-based DACs demonstrate overpotential

below  the  commonly  reported  theoretical  ORR  limit

  (0.5 V) of FeN4 SAC [40, 41], indicating their potential

for exceptional ORR activity. Generally,  the C-, N-co-

ordinated environment with the coordination number of

6  is more  active. Among,  the FeM-NC  systems,  espe-

cially their derived Janus structures, have been report-

ed  to  behave  excellent  performance  toward  ORR  re-
cently [42]. 

IV.  CONCLUSION

Utilizing the DimeNet++ approach with graph neu-

ral  representations, we  systematically  investigated  the

ORR  activities  of  2856  Fe-based  dual-atom  catalysts

with  four distinct FeM-NX coordination environments.
Employing a  training set of 180 catalysts,  totaling 540

adsorption  energy  data  points  and  180  overpotentials

data  points,  we  developed  a  robust  machine  learning

model capable of accurately predicting Gibbs free ener-

gy  data  for ORR  intermediates  and  overpotentials  on

FeM DACs. Our results indicate that 32 FeM DACs ex-

hibit potential catalytic activity superior to FeN4. Our

findings  provide  support  for  the  construction  of  ma-

chine  learning  models  for  DACs  with  various  local

structures and have  identified a  set of DACs with po-

tential ORR activity, offering effective tools and meth-

ods for the advancement of DAC development.

Supplementary materials: The predicted ΔGOOH, ΔGO,

ΔGOH for 2676 FeM DACs are shown. 
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FIG.  4   The machine  learning  workflow  screens  for  effi-
cient Fe-based ORR DACs.

 

FIG.  5   Predicting  the  overpotential  of  catalysts  across
the entire search space.
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