• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于机器学习的合金催化剂表面吸附能预测

Machine-Learning Adsorption on Binary Alloy Surfaces for Catalyst Screening

  • 摘要: 近年来,机器学习方法逐渐成为多相催化中的一种关键研究手段.二元合金材料作为重要的催化剂之一,在双功能催化剂的筛选中受到了广泛的关注.本文提出了一个将机器学习方法应用在预测催化性质上的整体框架,从而快速预测原子、分子在金属和二元合金表面的吸附能.通过测试不同的机器学习方法来评估它们对于该问题的适用性,并将树集成的方法与压缩感知方法相结合,利用约6\times10^4个吸附能数据构建了预测模型.相对于线性比例关系,该方法可以更准确地预测大量合金上的吸附能(预测的均方根误差降低一半),并且更通用地预测各种吸附物的能量,为发现新的双金属催化剂铺平了道路.

     

    Abstract: Over the last few years, machine learning is gradually becoming an essential approach for the investigation of heterogeneous catalysis. As one of the important catalysts, binary alloys have attracted extensive attention for the screening of bifunctional catalysts. Here we present a holistic framework for machine learning approach to rapidly predict adsorption energies on the surfaces of metals and binary alloys. We evaluate different machine-learning methods to understand their applicability to the problem and combine a tree-ensemble method with a compressed-sensing method to construct decision trees for about 60000 adsorption data. Compared to linear scaling relations, our approach enables to make more accurate predictions lowering predictive root-mean-square error by a factor of two and more general to predict adsorption energies of various adsorbates on thousands of binary alloys surfaces, thus paving the way for the discovery of novel bimetallic catalysts.

     

/

返回文章
返回