• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

键长-键角和Radau坐标下哈密顿算符在傅里叶基组表象下的厄米性

Hermiticity of Hamiltonian Matrix using the Fourier Basis Sets in Bond-Bond-Angle and Radau Coordinates

  • 摘要: 在量子动力学计算中,有时候为了规避奇点问题或者节省计算量,我们经常需要对哈密顿量进行变换. 然而,在使用傅里叶基矢计算时,哈密顿量的变换形式容易导致哈密顿矩阵失去厄米性,进而有些情况下使数值计算变得不稳定. 本文主要讨论构建具有厄米性的哈密顿算符的方法. 以三原子分子为例,构建了键长—键角和Radau坐标下描述分子运动的各种形式的哈密顿量. 基于这些哈密顿量,采用含时波包方法计算了OClO分子的吸收光谱,讨论了非厄米性矩阵对计算结果的影响. 本文所得到的结论对基于基函数展开的量子动力学计算都是适用的.

     

    Abstract: In quantum calculations a transformed Hamiltonian is often used to avoid singularities in a certain basis set or to reduce computation time. We demonstrate for the Fourier basis set that the Hamiltonian can not be arbitrarily transformed. Otherwise, the Hamiltonian matrix becomes non-hermitian, which may lead to numerical problems. Methods for correctly constructing the Hamiltonian operators are discussed. Specific examples involving the Fourier basis functions for a triatomic molecular Hamiltonian (J=0) in bond-bond angle and Radau coordinates are presented. For illustration, absorption spectra are calculated for the OClO molecule using the time-dependent wavepacket method. Numerical results indicate that the non-hermiticity of the Hamiltonian matrix may also result from integration errors. The conclusion drawn here is generally useful for quantum calculation using basis expansion method using quadrature scheme.

     

/

返回文章
返回