• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

固体氧化物燃料电池体系掺杂氧化锆的理论研究:从结构到导电性

Theoretical Aspects on Doped-Zirconia for Solid Oxide Fuel Cells: from Structure to Conductivity

  • 摘要: 固体氧化物燃料电池是一种将化学能(如H2和O2)转化为电能的清洁能源系统,它具有高效、低碳以及燃料适应性广的特点. 作为燃料电池的"心脏”,电解质决定了整个电池的性能,其中掺杂氧化锆是最为典型的燃料电池电解质材料. 氧化钇稳定氧化锆在高温下具有优良的离子电导率,广泛应用在固体燃料电池中. 电解质材料的组成和使用温度对电导率的影响在实验和理论上已得到了充分研究. 复合氧化物的原子结构的表征是阐明其导电行为的关键,本文综述了氧化钇稳定氧化锆电解质的结构和导电性研究的最新理论进展,比较了研究该材料所采用的不同的理论方法及其相应结果,并总结了各种方法的优缺点. 重点介绍了利用随机表面行走-神经网络方法取得的最新成果,这些成果和实验结果相吻合. 结果表明,采用机器学习进行原子模拟为理解固体电解质中遇到的复杂物质现象提供了一种经济、高效和准确的方法.

     

    Abstract: Solid oxide fuel cells (SOFCs) are regarded to be a key clean energy system to convert chemical energy (e.g. H2 and O2) into electrical energy with high efficiency, low carbon footprint, and fuel flexibility. The electrolyte, typically doped zirconia, is the "state of the heart" of the fuel cell technologies, determining the performance and the operating temperature of the overall cells. Yttria stabilized zirconia (YSZ) have been widely used in SOFC due to its excellent oxide ion conductivity at high temperature. The composition and temperature dependence of the conductivity has been hotly studied in experiment and, more recently, by theoretical simulations. The characterization of the atomic structure for the mixed oxide system with different compositions is the key for elucidating the conductivity behavior, which, however, is of great challenge to both experiment and theory. This review presents recent theoretical progress on the structure and conductivity of YSZ electrolyte. We compare different theoretical methods and their results, outlining the merits and deficiencies of the methods. We highlight the recent results achieved by using stochastic surface walking global optimization with global neural network potential (SSW-NN) method, which appear to agree with available experimental data. The advent of machine-learning atomic simulation provides an affordable, efficient and accurate way to understand the complex material phenomena as encountered in solid electrolyte. The future research directions for design better electrolytes are also discussed.

     

/

返回文章
返回