• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

约束条件下胶球间排空力的研究

Effects of Geometrical Confinement on Depletion Force in Colloidal System

  • 摘要: 用Monte Carlo方法对处于两平行硬板约束下三个浓度的大小胶球系统进行了模拟,通过对大胶球表面小胶球密度的统计,由密度积分公式获得了大胶球所受的排空力.研究结果显示,因为平行硬板的存在或当改变两平行硬板的距离时,同浓度下,排空力在硬板距离小的时候最明显;三个浓度中,浓度高的,排空力受硬板距离影响最大;有硬板约束比无该约束的时候,排空力效果更显著.

     

    Abstract: The depletion force on a large hard sphere in a solvent of small hard spheres under geometrical confinement is investigated by using local density integration method through Monte Carlo simulations. The model considered here is a rectangular box with two boundless hard plates placed in a direction. Small hard spheres are randomly distributed in the box to form a hard sphere fluid. The number of small spheres is determined by the given volume fraction. The size ratio of the large to small-sphere is 5. Three systems maintained at bulk volume fractions 0.116, 0.229, and 0.341 are studied. The effects of geometrical confinement are taken into account through changing the distance of the two plates. To get rid of the finite size effect, the sizes of the box in other two directions are enlarged in a way when the distance between the two plates is decreased. The configurations of the small spheres are sampled according to the Metropolis algorithm with the two large spheres fixed at a separation. Each small sphere is chosen and relocated using a trial displacement. The new position is accepted so long as it does not result in an overlap with the large hard spheres, the other small spheres or the plates. To take the geometrical confinements into account, the fixed boundary condition is used corresponding to the two plates. Meanwhile the magnitude of the maximum random displacement is adjusted so that the overall acceptance ratio is about 0.3-0.5. The numerical results show that the depletion force is affected by the geometrical confinements. Furthermore, the nearer the two plates are to each other, the larger the effects from the geometrical confinement will be.

     

/

返回文章
返回