Abstract:
The optimized geometries, frequencies, and total electronic energies of two all-metal dianionic clusters Ga42- , In42- are calculated at the B3LYP, B3PW91, and MP2 levels of theory. There are two stable structures for each Ga42- , In42- species. For Ga42- , In42- species the square isomers are the most stable. On the basis of these computed stable structures we focus on two magnetic properties: magnetic susceptibility anisotropy and nucleus-independent chemical shift (NICS) for the square planar Ga42- , In42- isomers, which are calculated with B3LYP and HF methods. The computed results of NICS show that the square planar Ga42- , In42- isomers possess strong aromaticity. The detailed molecular orbital analysis for the two isomers further reveals that the two square planar Ga42- , In42- isomers have multiple-fold aromaticity: one delocalized π MOs and two delocalized σ MOs, which play important role in explaining the special stability of these all-metal square clusters.