Concentration-Dependent Effect of Nickel Ions on Amyloid Fibril Formation Kinetics of Hen Egg White Lysozyme: a Raman Spectroscopy Study

Xinfei Li Xiaodong Chen Ning Chen Liming Liu Xiaoguo Zhou Shilin Liu

Xinfei Li, Xiaodong Chen, Ning Chen, Liming Liu, Xiaoguo Zhou, Shilin Liu. Concentration-Dependent Effect of Nickel Ions on Amyloid Fibril Formation Kinetics of Hen Egg White Lysozyme: a Raman Spectroscopy Study[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2303023
Citation: Xinfei Li, Xiaodong Chen, Ning Chen, Liming Liu, Xiaoguo Zhou, Shilin Liu. Concentration-Dependent Effect of Nickel Ions on Amyloid Fibril Formation Kinetics of Hen Egg White Lysozyme: a Raman Spectroscopy Study[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2303023

doi: 10.1063/1674-0068/cjcp2303023

Concentration-Dependent Effect of Nickel Ions on Amyloid Fibril Formation Kinetics of Hen Egg White Lysozyme: a Raman Spectroscopy Study

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Raman spectra of the native HEWL (in black) and the end-formed products in the presence of Ni(II) ions at the concentration of 1.36 mmol/L (in red) and 27.2 mmol/L (in blue) in the range of 730–790 cm−1 (a), 1300–1390 cm−1 (b), 910–1040 cm−1 (c), and 1610–1720 cm−1 (d), with thermal and acidic treatment.

    Figure  2.  The incubation time-dependence curves of the FWHM at 759 cm−1 (a) and the I1340/I1360 ratio (b) in the absence (in black) and presence of Ni(II) ions at the concentration of 1.36 mmol/L (in red) and 27.2 mmol/L (in blue) with thermal and acidic treatment.

    Figure  3.  Incubation time-dependent curves of the N-Cα-C stretching band intensity at 933 cm−1 and the peak position of amide I band, in the absence (a) and in the presence of Ni(II) ions at the concentration of 1.36 mmol/L (b) and 27.2 mmol/L (c) with thermal and acidic treatment.

    Figure  4.  Normalized amide I band profiles of HEWL in the denatured states in the absence (in black) and presence of Ni(II) ions at the concentrations of 1.36 mmol/L (in red) and 27.2 mmol/L (in blue) in thermal and acidic conditions.

    Figure  5.  (a) Fluorescence spectra of HEWL and ThT mixed solution in the native state and denaturation state after incubation for 196 h with thermal/acid (in black), thermal/acid/Ni(II) treatments ([Ni2+] of 1.36 mmol/L (in red), 27.2 mmol/L (in blue); (b) incubation time-dependence of the ThT fluorescence intensity at 477 nm.

    Table  I.   The lag duration (T0), transition midpoint time (Tm), equilibrium duration (Te), and a half interval (ΔT) of the peak position of the amide I indicator in the HEWL amyloid fibrillation process with thermal and acidic treatment.

    [Ni(II)]/(mmol/L)T0/hTm/hTe/hΔT/h
    02154±18916
    1.361949±37914
    27.21340±17114
    下载: 导出CSV
  • [1] F. Chiti and C. M. Dobson, Annu. Rev. Biochem. 86, 27 (2017). doi: 10.1146/annurev-biochem-061516-045115
    [2] R. N. Rambaran and L. C. Serpell, Prion 2, 112 (2008). doi: 10.4161/pri.2.3.7488
    [3] K. A. Conway, J. D. Harper, and P. T. Lansbury, Biochemistry 39, 2552 (2000). doi: 10.1021/bi991447r
    [4] C. M. Dobson, Nature 426, 884 (2003). doi: 10.1038/nature02261
    [5] C. Redfield and C. M. Dobson, Biochemistry 29, 7201 (1990). doi: 10.1021/bi00483a007
    [6] R. Swaminathan, V. K. Ravi, S. Kumar, M. V. S. Kumar, and N. Chandra, Adv. Protein Chem. Struct. Biol. 84, 63 (2011). doi: 10.1016/B978-0-12-386483-3.00003-3
    [7] H. Wang, J. Wu, R. Sternke-Hoffmann, W. Zheng, C. Morman, and J. Luo, Commun. Chem. 5, 171 (2022). doi: 10.1038/s42004-022-00786-1
    [8] S. Y. Ow and D. E. Dunstan, Soft Matter 9, 9692 (2013). doi: 10.1039/c3sm51671g
    [9] N. A. Jamuna, A. Kamalakshan, B. R. Dandekar, A. M. Chittilappilly Devassy, J. Mondal, and S. Mandal, J. Phys. Chem. B 127, 2198 (2023). doi: 10.1021/acs.jpcb.3c00274
    [10] P. Faller, C. Hureau, and O. Berthoumieu, Inorg. Chem. 52, 12193 (2013). doi: 10.1021/ic4003059
    [11] J. Sheng, N. K. Olrichs, W. J. Geerts, D. V. Kaloyanova, and J. B. Helms, Sci. Rep. 9, 1 (2019). doi: 10.1038/s41598-018-37186-2
    [12] M. Konar, A. Mathew, and S. Dasgupta, ACS Omega 4, 1015 (2019). doi: 10.1021/acsomega.8b03169
    [13] J. A. Duce and A. I. Bush, Prog. Neurobiol. 92, 1 (2010). doi: 10.1016/j.pneurobio.2010.04.003
    [14] L. M. Miller, Q. Wang, T. P. Telivala, R. J. Smith, A. Lanzirotti, and J. Miklossy, J. Struct. Biol. 155, 30 (2006). doi: 10.1016/j.jsb.2005.09.004
    [15] M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell, and W. R. Markesbery, J. Neurol. Sci. 158, 47 (1998). doi: 10.1016/S0022-510X(98)00092-6
    [16] B. Ma, F. Zhang, X. Wang, and X. Zhu, Int. J. Biol. Macromol. 98, 717 (2017). doi: 10.1016/j.ijbiomac.2017.01.128
    [17] R. Ceron, M. Peimbert, A. Rojo-Dominguez, and H. Najera, J. Biomol. Struct. Dyn. 41, 423 (2023). doi: 10.1080/07391102.2021.2006090
    [18] S. E. Hill, T. Miti, T. Richmond, and M. Muschol, PLoS One 6, e18171 (2011). doi: 10.1371/journal.pone.0018171
    [19] T. Miti, M. Mulaj, J. D. Schmit, and M. Muschol, Biomacromolecules 16, 326 (2015). doi: 10.1021/bm501521r
    [20] J. Wawer, M. Szocinski, M. Olszewski, R. Piatek, M. Naczk, and J. Krakowiak, Int. J. Biol. Macromol. 121, 63 (2019). doi: 10.1016/j.ijbiomac.2018.09.165
    [21] B. Zambelli, V. N. Uversky, and S. Ciurli, Biochim. Biophys. Acta 1864, 1714 (2016). doi: 10.1016/j.bbapap.2016.09.008
    [22] J. Zhao, X. Shi, V. Castranova, and M. Ding, J. Environ. Pathol. Toxicol. Oncol. 28, 177 (2009). doi: 10.1615/JEnvironPatholToxicolOncol.v28.i3.10
    [23] G. Drochioiu, M. Manea, M. Dragusanu, M. Murariu, E. S. Dragan, B. A. Petre, G. Mezo, and M. Przybylski, Biophys. Chem 144, 9 (2009). doi: 10.3390/ijerph17030679
    [24] S. J. Li, A. Nakagawa, and T. Tsukihara, Biochem. Biophys. Res. Commun. 324, 529 (2004). doi: 10.1016/j.bbrc.2004.09.078
    [25] S. L. Benoit and R. J. Maier, Sci. Rep. 11, 1 (2021). doi: 10.1038/s41598-020-79139-8
    [26] L. Jin, W. H. Wu, Q. Y. Li, Y. F. Zhao, and Y. M. Li, Nanoscale 3, 4746 (2011). doi: 10.1039/c1nr11029b
    [27] Y. Fan, H. Lan, Z. Qi, R. Liu, and C. Hu, Chemosphere 297, 134241 (2022). doi: 10.1016/j.chemosphere.2022.134241
    [28] L. Xing, W. Fan, N. Chen, M. Li, X. Zhou, and S. Liu, J. Raman Spectrosc. 50, 629 (2019). doi: 10.1002/jrs.5567
    [29] L. Xing, N. Chen, W. Fan, M. Li, X. Zhou, and S. Liu, Int. J. Biol. Macromol. 132, 929 (2019). doi: 10.1016/j.ijbiomac.2019.04.009
    [30] A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, J. Raman Spectrosc. 44, 1061 (2013). doi: 10.1002/jrs.4335
    [31] N. Kuhar, S. Sil, and S. Umapathy, Spectrochim. Acta Part A 258, 119712 (2021). doi: 10.1016/j.saa.2021.119712
    [32] W. Fan, L. Xing, N. Chen, X. Zhou, Y. Yu, and S. Liu, J. Phys. Chem. B 123, 8057 (2019). doi: 10.1021/acs.jpcb.9b06958
    [33] S. Dolui, A. Mondal, A. Roy, U. Pal, S. Das, A. Saha, and N. C. Maiti, J. Phys. Chem. B 124, 50 (2020). doi: 10.1021/acs.jpcb.9b09139
    [34] M. R. R. de Planque, B. B. Bonev, J. A. A. Demmers, D. V. Greathouse, R. E. Koeppe, F. Separovic, A. Watts, and J. A. Killian, Biochemistry 42, 5341 (2003). doi: 10.1021/bi027000r
    [35] J. A. Sweeney and S. A. Asher, J. Phys. Chem. 94, 4784 (1990). doi: 10.1021/j100375a009
    [36] I. Harada, T. Miura, and H. Takeuchi, Spectrochim. Acta Part A 42, 307 (1986). doi: 10.1016/0584-8539(86)80193-3
    [37] V. Kocherbitov, J. Latynis, A. Misiunas, J. Barauskas, and G. Niaura, J. Phys. Chem. B 117, 4981 (2013). doi: 10.1021/jp4017954
    [38] A. Barth, Biochim. Biophys. Acta 1767, 1073 (2007). doi: 10.1016/j.bbabio.2007.06.004
    [39] S. Dolui, A. Roy, U. Pal, A. Saha, and N. C. Maiti, ACS Omega 3, 2452 (2018). doi: 10.1021/acsomega.7b01776
    [40] A. Barth and C. Zscherp, Q. Rev. Biophys. 35, 369 (2002). doi: 10.1017/S0033583502003815
    [41] K. Huang, N. C. Maiti, N. B. Phillips, P. R. Carey, and M. A. Weiss, Biochemistry 45, 10278 (2006). doi: 10.1021/bi060879g
    [42] S. Mangialardo, F. Piccirilli, A. Perucchi, P. Dore, and P. Postorino, J. Raman Spectros. 43, 692 (2012). doi: 10.1002/jrs.3097
    [43] P. Ghosh and P. De, ACS Appl. Bio. Mater. 3, 9598 (2020). doi: 10.1021/acsabm.0c01021
    [44] C. C. Lee, A. Nayak, A. Sethuraman, G. Belfort, and G. J. McRae, Biophys. J. 92, 3448 (2007). doi: 10.1529/biophysj.106.098608
    [45] L. Nielsen, R. Khurana, A. Coats, S. Frokjaer, J. Brange, S. Vyas, V. N. Uversky, and A. L. Fink, Biochemistry 40, 6036 (2001). doi: 10.1021/bi002555c
    [46] A. Chaari, C. Fahy, A. Chevillot-Biraud, and M. Rholam, PLoS One 10, e0142095 (2015). doi: 10.1371/journal.pone.0142095
    [47] X. Chen, X. Deng, X. Han, Y. Liang, Z. Meng, R. Liu, W. Su, H. Zhu, and T. Fu, ACS Omega 6, 3307 (2021). doi: 10.1021/acsomega.0c05788
    [48] B. S. Moorthy, H. T. Ghomi, M. A. Lill, and E. M. Topp, Biophys. J. 108, 937 (2015). doi: 10.1016/j.bpj.2015.01.004
    [49] S. Karmakar, N. Sarkar, and L. M. Pandey, Colloids Surf. B 174, 401 (2019). doi: 10.1016/j.colsurfb.2018.11.032
    [50] H. Levine, Protein Sci. 2, 404 (1993). doi: 10.1002/pro.5560020312
    [51] M. Biancalana and S. Koide, Biochim. Biophys. Acta 1804, 1405 (2010). doi: 10.1016/j.bbapap.2010.04.001
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  69
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-15
  • 录用日期:  2023-04-28
  • 网络出版日期:  2023-05-08

目录

    /

    返回文章
    返回