Imaging Ultraviolet Light-Induced Oxygen Vacancy Diffusion on TiO2(110) Surface

Xiangyun Zhao Dong Wei Xianchi Jin Ling Jiang Zhibo Ma Xueming Yang

Xiangyun Zhao, Dong Wei, Xianchi Jin, Ling Jiang, Zhibo Ma, Xueming Yang. Imaging Ultraviolet Light-Induced Oxygen Vacancy Diffusion on TiO2(110) Surface[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2302012
Citation: Xiangyun Zhao, Dong Wei, Xianchi Jin, Ling Jiang, Zhibo Ma, Xueming Yang. Imaging Ultraviolet Light-Induced Oxygen Vacancy Diffusion on TiO2(110) Surface[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2302012

doi: 10.1063/1674-0068/cjcp2302012

Imaging Ultraviolet Light-Induced Oxygen Vacancy Diffusion on TiO2(110) Surface

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  (a) A 6.25 nm × 6.25 nm area of the reduced TiO2(110) surface. (b) The area in (a) after 1 min of 266 nm irradiation. The bright irregularities on the upper right corners of (a) and (b) are the same impurity used for locating. (c) The 3D topograph obtained by subtracting (b) from (a), the migration of OVs is visualized. The yellow protrusions represent the initial locations of migrating OVs, and the blue depressions indicate the final locations of OVs. The black arrows represent the moving directions of the OVs. (d) STM image of the area in (a) obtained after 100 s, at 80 K, without any irradiation. (e) STM image of a clean TiO2(110) surface, 6.25 nm × 6.25 nm. (f) The same area in (e) after 15 min of 355 nm UV laser irradiation, no OV diffusion is observed.

    Figure  2.  (a, b) Direct observation of the formation of three OV pairs. The OVs before merging are marked by blue rectangles, and the newly formed OV pairs are marked by green arrows. (c) A TiO2(110) surface with OV pairs as the primary point defects, prepared via extended UV irradiation time (68 min). The size of the scanning area is 7.1 nm × 9.5 nm.

    Figure  3.  Transitions between the two STM representations of OV pairs. (a) The initial TiO2(110) surface. (b, c) Transitions between two STM representations of OV pairs during scanning. (d, e) Two stable representations of OV pairs. (d) The bright elliptical protrusion which represents an OV pair. (e) The newly observed three-piece dim spots which also represent the OV pair. The green grid overlaid in (e) represents the TiO2 crystal lattice. The area is 4.0 nm × 4.0 nm in size.

    Figure  4.  The formation of OV trimers (4.7 nm × 4.4 nm). (a) The neighboring OV and OV pair before merging. (b) The resulting OV trimer. The OV and OV pair precursors are marked by white arrows.

  • [1] W. P. Mba, G. N. T. Longandjo, W. Moufouma-Okia, J. P. Bell, R. James, D. A. Vondou, A. Haensler, T. C. Fotso-Nguemo, G. M. Guenang, A. L. D. Tchotchou, P. H. Kamsu-Tamo, R. R. Takong, G. Nikulin, C. J. Lennard, and A. Dosio, Environ. Res. Lett. 13, 055011 (2018). doi: 10.1088/1748-9326/aab048
    [2] S. H. M. Butchart, M. Walpole, B. Collen, A. van Strien, J. P. W. Scharlemann, R. E. A. Almond, J. E. M. Baillie, B. Bomhard, C. Brown, J. Bruno, K. E. Carpenter, G. M. Carr, J. Chanson, A. M. Chenery, J. Csirke, N. C. Davidson, F. Dentener, M. Foster, A. Galli, J. N. Galloway, P. Genovesi, R. D. Gregory, M. Hockings, V. Kapos, J. F. Lamarque, F. Leverington, J. Loh, M. A. McGeoch, L. McRae, A. Minasyan, M. H. Morcillo, T. E. E. Oldfield, D. Pauly, S. Quader, C. Revenga, J. R. Sauer, B. Skolnik, D. Spear, D. Stanwell-Smith, S. N. Stuart, A. Symes, M. Tierney, T. D. Tyrrell, J. C. Vie, and R. Watson, Science 328, 1164 (2010). doi: 10.1126/science.1187512
    [3] K. Riahi, D. P. van Vuuren, E. Kriegler, J. Edmonds, B. C. O'Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko, W. Lutz, A. Popp, J. C. Cuaresma, K. C. Samir, M. Leimbach, L. Jiang, T. Kram, S. Rao, J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik, F. Humpenoeder, L. A. da Silva, S. Smith, E. Stehfest, V. Bosetti, J. Eom, D. Gernaat, T. Masui, J. Rogelj, J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark, J. C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner, A. Tabeau, and M. Tavoni, Glob. Environ. Change 42, 153 (2017). doi: 10.1016/j.gloenvcha.2016.05.009
    [4] G. T. Pecl, M. B. Araujo, J. D. Bell, J. Blanchard, T. C. Bonebrake, I. C. Chen, T. D. Clark, R. K. Colwell, F. Danielsen, B. Evengard, L. Falconi, S. Ferrier, S. Frusher, R. A. Garcia, R. B. Griffis, A. J. Hobday, C. Janion-Scheepers, M. A. Jarzyna, S. Jennings, J. Lenoir, H. I. Linnetved, V. Y. Martin, P. C. McCormack, J. McDonald, N. J. Mitchell, T. Mustonen, J. M. Pandolfi, N. Pettorelli, E. Popova, S. A. Robinson, B. R. Scheffers, J. D. Shaw, C. J. B. Sorte, J. M. Strugnell, J. M. Sunday, M. N. Tuanmu, A. Verges, C. Villanueva, T. Wernberg, E. Wapstra, and S. E. Williams, Science 355, eaai9214 (2017). doi: 10.1126/science.aai9214
    [5] K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys., Part 1 44, 8269 (2005). doi: 10.1143/JJAP.44.8269
    [6] M. N. Chong, B. Jin, C. W. K. Chow, and C. Saint, Water Res. 44, 2997 (2010). doi: 10.1016/j.watres.2010.02.039
    [7] T. P. Yoon, M. A. Ischay, and J. Du, Nat. Chem. 2, 527 (2010). doi: 10.1038/nchem.687
    [8] A. Fujishima and K. Honda, Nature 238, 37 (1972). doi: 10.1038/238037a0
    [9] I. Sokolovic, M. Reticcioli, M. Calkovsky, M. Wagner, M. Schmid, C. Franchini, U. Diebold, and M. Setvin, Proc. Natl. Acad. Sci. 117, 14827 (2020). doi: 10.1073/pnas.1922452117
    [10] R. Pawlak, A. Sadeghi, R. Johr, A. Hinaut, T. Meier, S. Kawai, L. Zajac, P. Olszowski, S. Godlewski, B. Such, T. Glatzel, S. Goedecker, M. Szymonski, and E. Meyer, J. Phys. Chem. C 121, 3607 (2017). doi: 10.1021/acs.jpcc.6b11873
    [11] X. Yu, Z. Zhang, C. Yang, F. Bebensee, S. Heissler, A. Nefedov, M. Tang, Q. Ge, L. Chen, B. D. Kay, Z. Dohnalek, Y. Wang, and C. Woell, J. Phys. Chem. C 120, 12626 (2016). doi: 10.1021/acs.jpcc.6b03689
    [12] L. A. Miccio, M. Setvin, M. Müller, M. Abadia, I. Piquero, J. Lobo-Checa, F. Schiller, C. Rogero, M. Schmid, D. Sanchez-Portal, U. Diebold, and J. E. Ortega, Nano Lett. 16, 2017 (2016). doi: 10.1021/acs.nanolett.5b05286
    [13] Y. Yoon, Y. Du, J. C. Garcia, Z. Zhu, Z. T. Wang, N. G. Petrik, G. A. Kimmel, Z. Dohnalek, M. A. Henderson, R. Rousseau, N. A. Deskins, and I. Lyubinetsky, ChemPhysChem 16, 313 (2015). doi: 10.1002/cphc.201402599
    [14] M. Setvin, M. Buchholz, W. Hou, C. Zhang, B. Stoeger, J. Hulva, T. Simschitz, X. Shi, J. Pavelec, G. S. Parkinson, M. Xu, Y. Wang, M. Schmid, C. Woell, A. Selloni, and U. Diebold, J. Phys. Chem. C 119, 21044 (2015). doi: 10.1021/acs.jpcc.5b07999
    [15] P. Huo, J. O. Hansen, U. Martinez, E. Lira, R. Streber, Y. Wei, E. Laegsgaard, B. Hammer, S. Wendt, and F. Besenbacher, J. Phys. Chem. Lett. 3, 283 (2012). doi: 10.1021/jz201616z
    [16] J. Matthiesen, S. Wendt, J. O. Hansen, G. K. H. Madsen, E. Lira, P. Galliker, E. K. Vestergaard, R. Schaub, E. Laegsgaard, B. Hammer, and F. Besenbacher, ACS Nano 3, 517 (2009). doi: 10.1021/nn8008245
    [17] O. Dulub, M. Batzill, S. Solovev, E. Loginova, A. Alchagirov, T. E. Madey, and U. Diebold, Science 317, 1052 (2007). doi: 10.1126/science.1144787
    [18] S. Wendt, R. Schaub, J. Matthiesen, E. K. Vestergaard, E. Wahlstrom, M. D. Rasmussen, P. Thostrup, L. M. Molina, E. Laegsgaard, I. Stensgaard, B. Hammer, and F. Besenbacher, Surf. Sci. 598, 226 (2005). doi: 10.1016/j.susc.2005.08.041
    [19] Q. Guo, C. Zhou, Z. Ma, and X. Yang, Adv. Mater. 31, 1901997 (2019). doi: 10.1002/adma.201901997
    [20] A. Fujishima, X. Zhang, and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008). doi: 10.1016/j.surfrep.2008.10.001
    [21] U. I. Gaya and A. H. Abdullah, J. Photochem. Photobio. C-Photochem. Rev. 9, 1 (2008). doi: 10.1016/j.jphotochemrev.2007.12.003
    [22] M. A. Henderson, Surf. Sci. Rep. 66, 185 (2011). doi: 10.1016/j.surfrep.2011.01.001
    [23] K. Nakata and A. Fujishima, J. Photochem. Photobio. C-Photochem. Rev. 13, 169 (2012). doi: 10.1016/j.jphotochemrev.2012.06.001
    [24] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, Chem. Rev. 114, 9919 (2014). doi: 10.1021/cr5001892
    [25] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, Chem. Soc. Rev. 43, 5234 (2014). doi: 10.1039/C4CS00126E
    [26] W. J. Yin, B. Wen, C. Zhou, A. Selloni, and L. M. Liu, Surf. Sci. Rep. 73, 58 (2018). doi: 10.1016/j.surfrep.2018.02.003
    [27] B. Wen, W. J. Yin, A. Selloni, and L. M. Liu, J. Phys. Chem. Lett. 9, 5281 (2018). doi: 10.1021/acs.jpclett.8b02286
    [28] B. Wen, Q. Hao, W. J. Yin, L. Zhang, Z. Wang, T. Wang, C. Zhou, A. Selloni, X. Yang, and L. M. Liu, Phys. Chem. Chem. Phys. 20, 17658 (2018). doi: 10.1039/C8CP02648C
    [29] M. Reticcioli, M. Setvin, M. Schmid, U. Diebold, and C. Franchini, Phys. Rev. B 98, 045306 (2018). doi: 10.1103/PhysRevB.98.045306
    [30] T. Shibuya, K. Yasuoka, S. Mirbt, and B. Sanyal, J. Phys. Chem. C 121, 11325 (2017).
    [31] H. Cheng and A. Selloni, Phys. Rev. B 79, 092101 (2009). doi: 10.1103/PhysRevB.79.092101
    [32] X. Y. Wu, A. Selloni, and S. K. Nayak, J. Chem. Phys. 120, 4512 (2004). doi: 10.1063/1.1636725
    [33] Z. W. Wang, D. J. Shu, M. Wang, and N. B. Ming, Surf. Sci. 606, 186 (2012). doi: 10.1016/j.susc.2011.09.014
    [34] Z. W. Wang, D. J. Shu, M. Wang, and N. B. Ming, Phys. Rev. B 82, 165309 (2010). doi: 10.1103/PhysRevB.82.165309
    [35] T. Shibuya, K. Yasuoka, S. Mirbt, and B. Sanyal, J. Phys. Chem. C 118, 9429 (2014). doi: 10.1021/jp410596d
    [36] Z. Zhang, Q. Ge, S. C. Li, B. D. Kay, J. M. White, and Z. Dohnalek, Phys. Rev. Lett. 99, 126105 (2007). doi: 10.1103/PhysRevLett.99.126105
    [37] X. Cui, B. Wang, Z. Wang, T. Huang, Y. Zhao, J. Yang, and J. G. Hou, J. Chem. Phys. 129, 044703 (2008). doi: 10.1063/1.2955448
  • 加载中
图(4)
计量
  • 文章访问数:  584
  • HTML全文浏览量:  290
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-02
  • 录用日期:  2023-04-22
  • 网络出版日期:  2023-05-25

目录

    /

    返回文章
    返回