Effects of Storage Time and Hydrogen Peroxide on the Formation of Soy Globulin 15S in 11S Dilute Solutions Investigated by Analytical Ultracentrifugation

Hehang Shi Xiaodong Ye

Hehang Shi, Xiaodong Ye. Effects of Storage Time and Hydrogen Peroxide on the Formation of Soy Globulin 15S in 11S Dilute Solutions Investigated by Analytical Ultracentrifugation[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2302011
Citation: Hehang Shi, Xiaodong Ye. Effects of Storage Time and Hydrogen Peroxide on the Formation of Soy Globulin 15S in 11S Dilute Solutions Investigated by Analytical Ultracentrifugation[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2302011

doi: 10.1063/1674-0068/cjcp2302011

Effects of Storage Time and Hydrogen Peroxide on the Formation of Soy Globulin 15S in 11S Dilute Solutions Investigated by Analytical Ultracentrifugation

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  SEC elution profiles of two 11S fractions prepared by Method 1 (A) and Method 2 (B).

    Figure  2.  Sedimentation velocity analysis of the purified 11S (Fraction a) at 35000 r/min and 20 °C. (A) The collected data and fit data, (B) fit residuals.

    Figure  3.  Sedimentation coefficient distribution of the purified 11S (Fraction a).

    Figure  4.  UV-Vis spectra of the purified 11S prepared by two methods with the addition of 5.0 mmol/L DTNB at 11S concentration of 1.0 mg/mL.

    Figure  5.  Sedimentation coefficient distributions (A) and the composition (B) of the purified 11S (Fraction a) after storage at 4 °C for different days. The inset displays the partially enlarged sedimentation coefficient distributions.

    Figure  6.  Sedimentation coefficient distributions of the purified 11S (Fraction b) after storage at 4 °C for 1 day and 90 days, respectively.

    Figure  7.  Sedimentation coefficient distributions (A) and the 15S weight percentage (B) of the purified 11S treated with different concentrations of H2O2 at 4 °C for 1 h. The inset displays the partially enlarged sedimentation coefficient distributions.

    Figure  8.  Sedimentation coefficient distributions of the purified 11S (Fraction a) stored at 4 °C for 47 days (A) and H2O2-treated 11S (B) with the addition of 10 mmol/L 2-ME.

  • [1] K. Nishinari, Y. Fang, S. Guo, and G. O. Phillips, Food Hydrocoll. 39, 301 (2014). doi: 10.1016/j.foodhyd.2014.01.013
    [2] W. E. F. Naismith, Biochim. Biophys. Acta 16, 203 (1955). doi: 10.1016/0006-3002(55)90205-5
    [3] W. J. Wolf and D. R. Briggs, Arch. Biochem. Biophys. 76, 377 (1958). doi: 10.1016/0003-9861(58)90163-2
    [4] D. R. Briggs and W. J. Wolf, Arch. Biochem. Biophys. 72, 127 (1957). doi: 10.1016/0003-9861(57)90180-7
    [5] W. J. Wolf and T. C. Nelsen, J. Agric. Food Chem. 44, 785 (1996). doi: 10.1021/jf940493p
    [6] K. Ni, Y. T. Gao, and X. D. Ye, Food Hydrocoll. 113, 106461 (2021). doi: 10.1016/j.foodhyd.2020.106461
    [7] W. J. Wolf, G. E. Babcock, and A. K. Smith, Arch. Biochem. Biophys. 99, 265 (1962). doi: 10.1016/0003-9861(62)90009-7
    [8] K. Hashizume, K. Kakiuchi, E. Koyama, and T. Watanabe, Agric. Biol. Chem. 35, 449 (1971).
    [9] E. J. Kang, R. E. Campbell, E. Bastian, and M. A. Drake, J. Dairy Sci. 93, 3891 (2010). doi: 10.3168/jds.2010-3190
    [10] M. H. Shen and R. K. Singh, LWT-Food Sci. Technol. 142, 110986 (2021). doi: 10.1016/j.lwt.2021.110986
    [11] R. Stearns, A. Freshour, and C. Shen, J. Agric. Food Chem. 10, 100442 (2022).
    [12] K. C. Chang, H. F. Marshall, and L. D. Satterlee, J. Food Sci. 47, 1181 (1982). doi: 10.1111/j.1365-2621.1982.tb07644.x
    [13] Y. Z. Li, J. S. Li, J. T. Wang, F. G. Li, L. J. Yan, and G. X. Huang, China Feed 31, 27 (2020).
    [14] S. M. Lo, P. A. Martinez, E. F. Marques, S. Miyamoto, G. Valdameri, V. R. Moure, S. M. Zanata, and L. S. Nakao, Arch. Biochem. Biophys. 692, 108515 (2020). doi: 10.1016/j.abb.2020.108515
    [15] J. A. Semelak, F. Battistini, R. Radi, M. Trujillo, A. Zeida, and D. A. Estrin, J. Chem. Inf. Model 60, 843 (2020). doi: 10.1021/acs.jcim.9b00817
    [16] V. H. Thanh and K. Shibasaki, J. Agric. Food Chem. 24, 1117 (1976). doi: 10.1021/jf60208a030
    [17] W. J. Wolf, J. Agric. Food Chem. 41, 168 (1993). doi: 10.1021/jf00026a004
    [18] J. Lebowitz, M. S. Lewis, and P. Schuck, Protein Sci. 11, 2067 (2002).
    [19] P. H. Brown and P. Schuck, Biophys. J. 90, 4651 (2006). doi: 10.1529/biophysj.106.081372
    [20] T. M. Laue, B. D. Shah, T. M. Ridgeway, and S. L. Pelletier, Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe, and J. C. Horton Eds., Cambridge: Royal Society of Chemistry, 90 (1992).
    [21] G. L. Ellman, Arch. Biochem. Biophys. 82, 70 (1959). doi: 10.1016/0003-9861(59)90090-6
    [22] R. A. Badley, D. Atkinson, H. Hauser, D. Oldani, J. P. Green, and J. Stubb, Biochim. Biophys. Acta 412, 214 (1975). doi: 10.1016/0005-2795(75)90036-7
    [23] O. F. Castellani, E. N. Martínez, and M. C. Añón, J. Agric. Food Chem. 47, 3001 (1999). doi: 10.1021/jf981252a
    [24] K. Li, L. Fu, Y. Y. Zhao, S. W. Xue, P. Wang, X. L. Xu, and Y. H. Bai, Food Hydrocoll. 98, 105275 (2020). doi: 10.1016/j.foodhyd.2019.105275
    [25] T. Nakamura, S. Utsumi, K. Kitamura, K. Harada, and T. Mori, J. Agric. Food Chem. 32, 647 (1984). doi: 10.1021/jf00123a055
    [26] C. H. Tang and L. Shen, J. Agric. Food Chem. 61, 3097 (2013). doi: 10.1021/jf305471k
    [27] Y. L. Luo, W. Zheng, Q. Shen, L. Zhang, C. Tang, R. Song, S. L. Liu, B. Li, and Y. J. Chen, Food Hydrocoll. 120, 106866 (2021). doi: 10.1016/j.foodhyd.2021.106866
    [28] Q. J. Ruan, Y. M. Chen, X. Z. Kong, and Y. F. Hua, Food Chem. 156, 14 (2014). doi: 10.1016/j.foodchem.2014.01.083
    [29] D. H. Hou and S. K. Chang, J. Agric. Food Chem. 52, 3792 (2004). doi: 10.1021/jf035072z
    [30] C. N. Pace, F. Vajdos, L. Fee, G. Grimsley, and T. Gray, Protein Sci. 4, 2411 (1995). doi: 10.1002/pro.5560041120
    [31] M. C. García, M. Torre, M. L. Marina, F. Laborda, and A. R. Rodriquez, Crit. Rev. Food Sci. Nutr. 37, 361 (1997). doi: 10.1080/10408399709527779
    [32] R. Cecil and J. R. McPhee, Adv. Protein Chem. 14, 255 (1959).
    [33] L. A. H. van Bergen, G. Roos, and F. De Proft, J. Phys. Chem. A 118, 6078 (2014). doi: 10.1021/jp5018339
    [34] J. P. R. Chauvin and D. A. Pratt, Angew. Chem. Int. Ed. 56, 6255 (2017). doi: 10.1002/anie.201610402
    [35] A. T. Saurin, H. Neubert, J. P. Brennan, and P. Eaton, Proc. Natl. Acad. Sci. USA 101, 17982 (2004). doi: 10.1073/pnas.0404762101
    [36] L. Men and Y. Wang, J. Proteome Res. 6, 216 (2007). doi: 10.1021/pr0603809
    [37] Z. A. Wood, L. B. Poole, and P. A. Karplus, Science 300, 650 (2003). doi: 10.1126/science.1080405
  • 加载中
图(8)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  160
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-01
  • 录用日期:  2023-03-06
  • 网络出版日期:  2023-03-08

目录

    /

    返回文章
    返回