-
Abstract: The interaction of proteins with salt ions plays an important role in life activities. We used butyramide as a model molecule to investigate the interaction of protein backbones with cations. The experiment was performed in an aqueous solution of metal chloride using UV Raman spectroscopy. It was found that well-hydrated metal cations (Ca2+, Mg2+) tend to bind to C=O in the amide bond, resulting in redistribution of the amide I band peaks. Specifically, the peak intensity ratio of 1655 cm−1 to 1610 cm−1 increases significantly with increasing concentrations. However, this phenomenon is not obviously observed in NaCl solution. Furthermore, we studied the effect of salt ions on the water structures. The addition of Ca2+ and Mg2+ is beneficial to the enhancement of the water signal at the 3400 cm−1 position, while the Na+ at the same concentration is not obvious. The results have shown that the interaction between cations and amides satisfies the following order: Ca2+>Mg2+>Na+, which conforms to the Hofmeister series.
-
Key words:
- UV Raman spectroscopy /
- Butyramide /
- Hofmeister
-
Figure 3. UV-Raman measurements of the interaction of butyramide with different solutions. From left to right are Raman spectra, the ratio of A1655/1610 and A3400/3200 and schematic representation of butyramide molecule with different cations. (a) Butyramide solutions. (b) Butyramide with NaCl. (c) Butyramide with CaCl2. (d) Butyramide with MgCl2.
-
[1] A. Mukhopadhyay and P. Dubey, J. Raman Spectrosc. 49, 736 (2018). doi: 10.1002/jrs.5322 [2] B. C. Gibb, Nat. Chem. 11, 963 (2019). doi: 10.1038/s41557-019-0355-1 [3] J. Tang, Nat. Nanotechnol. 14, 1091 (2019). doi: 10.1038/s41565-019-0581-0 [4] K. P. Gregory, G. R. Elliott, H. Robertson, A. Kumar, E. J. Wanless, G. B. Webber, V. S. J. Craig, G. G. Andersson, and A. J. Page, Phys. Chem. Chem. Phys. 24, 12682 (2022). doi: 10.1039/D2CP00847E [5] B. Rana, D. J. Fairhurst, and K. C. Jena, J. Am. Chem. Soc. 144, 17832 (2022). doi: 10.1021/jacs.2c05837 [6] I. Asakereh, K. Lee, O. A. Francisco, and M. Khajehpour, Chemphyschem 23, e202100884 (2022). doi: 10.1002/cphc.202100884 [7] S. Cruz-Leon and N. Schwierz, Langmuir 36, 5979 (2020). doi: 10.1021/acs.langmuir.0c00851 [8] P. H. C. Paiva, Y. L. Coelho, L. H. M. da Silva, M. S. Pinto, M. C. T. Vidigal, and A. C. D. S. Pires, Food Chem. 305, 125463 (2020). doi: 10.1016/j.foodchem.2019.125463 [9] S. S. Ribeiro, T. G. Castro, C. M. Gomes, and J. C. Marcos, Phys. Chem. Chem. Phys. 23, 25210 (2021). doi: 10.1039/D1CP02477A [10] B. C. Gibb, Nat. Chem. 10, 797 (2018). doi: 10.1038/s41557-018-0111-y [11] J. H. Jordan, C. L. D. Gibb, A. Wishard, T. Pham, and B. C. Gibb, J. Am. Chem. Soc. 140, 4092 (2018). doi: 10.1021/jacs.8b00196 [12] W. Wei, X. Chen, and X. Wang, Small 18, 2200921 (2022). doi: 10.1002/smll.202200921 [13] H. I. Okur, J. Kherb, and P. S. Cremer, J. Am. Chem. Soc. 135, 5062 (2013). doi: 10.1021/ja3119256 [14] Y. Zhang and P. S. Cremer, Annu. Rev. Phys. Chem. 61, 63 (2010). doi: 10.1146/annurev.physchem.59.032607.093635 [15] K. D. Collins, G. W. Neilson, J. E. Enderby, Biophys. Chem. 128, 95 (2007). doi: 10.1016/j.bpc.2007.03.009 [16] P. Jungwirth and B. Winter, Rev. Phys. Chem. 59, 343 (2008). doi: 10.1146/annurev.physchem.59.032607.093749 [17] Y. An, K. Sun, Y. Qiu, and L. Zhang, Minerals 12, 1070 (2022). [18] M. R. Fries, N. F. Conzelmann, L. Guenter, and O. Matsarskaia, M. W. Skoda, R. M. Jacobs, and F. Schreiber, Langmuir 37, 139 (2021). doi: 10.1021/acs.langmuir.0c02618 [19] A. Kato, Y. Katsuki, and E. Nishimoto, Chem. Phys. Lett. 730, 89 (2019). doi: 10.1016/j.cplett.2019.05.019 [20] M. E. Richert, G. G. Gochev, and B. Braunschweig, Langmuir 35, 11299 (2019). doi: 10.1021/acs.langmuir.9b01803 [21] K. Tian, W. Wang, Y. Yao, X. Nie, A. Lu, Y. Wu, and C. Han, J. Raman Spectrosc. 49, 472 (2018). doi: 10.1002/jrs.5306 [22] M. Arabi, A. Ostovan, Z. Zhang, Y. Wang, M. Arabi, A. Ostovan, Z. Zhang, Y. Wang, R. Mei, L. Fu, and L. Chen, Biosens. Bioelectron. 174, 112825 (2021). doi: 10.1016/j.bios.2020.112825 [23] F. Nicolson, M. F. Kircher, N. Stone, and P. Matousek, Chem. Soc. Rev. 50, 556 (2021). doi: 10.1039/D0CS00855A [24] P. Shvets, O. Dikaya, K. Maksimova, and A. Goikhman, J. Raman Spectrosc. 50, 1226 (2019). doi: 10.1002/jrs.5616 [25] J. F. Schultz, S. Mahapatra, L. Li, and N. Jiang, Appl. Spectrosc. 74, 1313 (2020). doi: 10.1177/0003702820932229 [26] J. Wang, K. Liu, S. Jin, L. Jiang, and P. Liangg, Appl. Spectrosc. 74, 130 (2020). doi: 10.1177/0003702819828360 [27] S. A. Oladepo, K. Xiong, Z. Hong, S. A. Asher, J. Handen, and I. K. Lednev, Chem. Rev. 112, 2604 (2012). doi: 10.1021/cr200198a [28] J. Geng, M. Aioub, M. A. El-Sayed, and B. A. Barry, ChemPhysChem 19, 1428 (2018). doi: 10.1002/cphc.201800252 [29] M. Liu, Y. Shi, M. Wu, Y. Tian, H. Wei, Q. Sun, and B. Man, J. Raman Spectrosc. 51, 750 (2020). doi: 10.1002/jrs.5846 [30] P. Ortiz-Amezcua, A. Esteban Bedoya-Velasquez, J. A. Benavent-Oltra, D. Pérez-Ramírez, I. Veselovskii, M. Castro-Santiago, and L. Alados-Arboledas, Opt. Express 28, 8156 (2020). doi: 10.1364/OE.383441 [31] B. W. Lin, Y. H. Tai, Y. C. Lee, D. Xing, H. C. Lin, H. Yamahara, and J. J. Delaunay, Appl. Phys. Lett. 120, 051102 (2022). doi: 10.1063/5.0084907 [32] Y. Gao, T. Xuan, F. Chen, Y. Wu, X. Guo, Y. Wen, and H. Yang, Sens. Actuators B 304, 127223 (2020). doi: 10.1016/j.snb.2019.127223 [33] S. C. Epstein, A. R. Huff, E. S. Winesett, C. H. Londergan, and L. K. Charkoudian, Nat. Commun. 10, 2227 (2019). doi: 10.1038/s41467-019-10184-2 [34] Y. R. Shen and V. Ostroverkhov, Chem. Rev. 106, 1140 (2006). doi: 10.1021/cr040377d [35] M. Sovago, R. K. Campen, G. W. H. Wurpel, M. Müller, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 100, 173901 (2008). doi: 10.1103/PhysRevLett.100.173901 [36] S. Ye, S. Ma, F. Wei, and H. Li, Analyst 137, 4981 (2012). doi: 10.1039/c2an35684h -