Selective Preparation of Light Olefins from Cellulose-Derived Fermentation Intermediates

Danfeng Lou Rui Zhang Yuehui Luo Quanxin Li

Danfeng Lou, Rui Zhang, Yuehui Luo, Quanxin Li. Selective Preparation of Light Olefins from Cellulose-Derived Fermentation Intermediates[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2301007
Citation: Danfeng Lou, Rui Zhang, Yuehui Luo, Quanxin Li. Selective Preparation of Light Olefins from Cellulose-Derived Fermentation Intermediates[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2301007

doi: 10.1063/1674-0068/cjcp2301007

Selective Preparation of Light Olefins from Cellulose-Derived Fermentation Intermediates

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Influence of temperature on production of light-olefins from dehydrated ABE. Reaction conditions: 2 g Ce/SAPO34 catalyst, 2 g dehydrated ABE. (a) conversion, olefin yield, olefin selectivity, and carbon balance; (b) selectivity of different products.

    Figure  2.  Production of light olefins from two cellulose derived ABE. (a) aqueous ABE (water content: 97.8%); (b) dehydrated ABE (water content: 5.8%). Reaction conditions: 2 g Ce/SAPO34 catalyst, 2 g ABE, T=350 °C.

    Figure  3.  Catalyst characterization of Ce/SAPO-34 catalyst. (a) N2 adsorption-desorption isotherms, (b) pore distribution, (c) SEM image, (d) TEM image.

    Figure  4.  Possible reaction pathways for production of light olefins from cellulose-based ABE.

    Figure  5.  Catalyst stability and reusability in the production of light olefins from the dehydrated ABE. Reaction condition: 2 g Ce/SAPO34 catalyst, 2 g dehydrated ABE, T=350 °C. Regeneration condition: T=550 °C, t=2 h. (a) Conversion, olefin yield and carbon balance, (b) selectivity of different products.

    Table  I.   Production of light-olefins from the dehydrated ABE using different catalysts. C: conversion, Solefin: olefin selectivity, Saromatics: aromatics selectivity, and Yolefin: olefin yield. Reaction conditions: 2 g catalyst, 2 g dehydrated ABE, T=350 °C.

    CatalystsC/%Solefin/%
    Saromatics/%
    Yolefin/%
    Al-MCM-4189.549.919.244.7
    HZSM-592.551.524.547.6
    Ce/SAPO-3491.986.14.479.1
    SAPO-3493.282.76.577.1
    90.856.620.251.4
    下载: 导出CSV

    Table  II.   Main characteristics of catalysts. SBET: Brunauer-Emmet-Teller surface area in m2/g, Vp: pore-volume in cm3/g, Total acidity in µmol NH3/g, B/L: Bronsted/Lewis acid ratio and S/W: strong/weak acid ratio.

    CatalystsSBETVpTotal acidityB/LS/W
    HZSM-54550.225805.50.9
    6080.313030.40.7
    Al-MCM-4110200.522641.70.3
    SAPO-345920.3013930.6
    Ce@SAPO-344080.1810270.3
    下载: 导出CSV
  • [1] J. P. Ma, S. Shi, X. Q. Jia, F. Xia, H. Ma, J. Gao, and J. Xie, J. Energy Chem. 36, 74 (2019). doi: 10.1016/j.jechem.2019.04.026
    [2] L. F. Zhu, X. Fu, Y. X. Hu, and C. W. Hu, ChemSusChem 13, 4812 (2020). doi: 10.1002/cssc.202001341
    [3] X. Liu, T. F. Li, S. B. Wu, H. Ma, and Y. H. Yin, Bioresour. Technol. 310, 123460 (2020). doi: 10.1016/j.biortech.2020.123460
    [4] Z. Y. Li, Z. P. Zhong, B. Zhang, W. Wang, G. V. S. Seufitelli, and F. L. P. Resende, Waste Manage. 102, 561 (2020). doi: 10.1016/j.wasman.2019.11.012
    [5] S. K. Bhatia, S. H. Kim, J. J. Yoon, and Y. H. Yang, Energy Convers. Manage. 148, 1142 (2017). doi: 10.1016/j.enconman.2017.06.073
    [6] Y. Guo, Y. Liu, M. D. Guan, H. C. Tang, Z. L. Wang, L. H. Lin, and H. Pang, RSC Adv. 12, 18848 (2022). doi: 10.1039/D1RA09396G
    [7] P. X. Wang, J. Zhang, J. Feng, S. J. Wang, L. Guo, Y. F. Wang, Y. Y. Lee, S. Taylor, T. McDonald, and Y. Wang, Bioresour. Technol. 281, 217 (2019). doi: 10.1016/j.biortech.2019.02.096
    [8] C. Xue, M. Liu, X. W. Guo, E. P. Hudson, L. J. Chen, F. W. Bai, F. F. Liu, and S. T. Yang, Green Chem. 19, 660 (2017). doi: 10.1039/C6GC02546C
    [9] Z. Q. Wen, R. Ledesma-Amaro, M. R. Lu, M. J. Jin, and S. Yang, ACS Synth. Biol. 9, 304 (2020). doi: 10.1021/acssynbio.9b00331
    [10] F. Cebreiros, M. D. Ferrari, and C. Lareo, Ind. Crop. Prod. 134, 50 (2019). doi: 10.1016/j.indcrop.2019.03.059
    [11] J. W. Wu, L. L. Dong, B. F. Liu, D. F. Xing, C. S. Zhou, Q. Wang, X. K. Wu, L. P. Feng, and G. L. Cao, Environ. Res. 186, 109580 (2020). doi: 10.1016/j.envres.2020.109580
    [12] P. Anbarasan, Z. C. Baer, S. Sreekumar, E. Gross, J. B. Binder, H. W. Blanch, D. S. Clark, and F. D. Toste, Nature 491, 235 (2012). doi: 10.1038/nature11594
    [13] M. A. Diaz-Perez and J. C. Serrano-Ruiz, Molecules 25, 802 (2020). doi: 10.3390/molecules25040802
    [14] B. H. H. Goh, C. T. Chong, H. C. Ong, T. Seljak, T. Katrasnik, V. Jozsa, J. H. Ng, B. Tian, S. Karmarkar, and V. Ashokkumarh, Energy Convers. Manage. 251, 114974 (2022). doi: 10.1016/j.enconman.2021.114974
    [15] Y. Chen, Y. L. Wu, L. Tao, B. Dai, M. D. Yang, Z. Chen, and X. Y. Zhu, J. Ind. Eng. Chem. 16, 717 (2010). doi: 10.1016/j.jiec.2010.07.013
    [16] M. A. Perez, R. Bringue, M. Iborra, J. Tejero, and F. Cunill, Appl. Catal. A Gen. 482, 38 (2014). doi: 10.1016/j.apcata.2014.05.017
    [17] K. Cheng, B. Gu, X. Liu, J. Kang, Q. Zhang, and Y. Wang, Angew. Chem. Int. Ed. 55, 4725 (2016). doi: 10.1002/anie.201601208
    [18] S. X. Bai, F. F. Liu, B. L. Huang, F. Li, H. P. Lin, T. Wu, M. Z. Sun, J. B. Wu, Q. Shao, Y. Xu, and X. Q. Huang, Nat. Commun. 11, 954 (2020). doi: 10.1038/s41467-020-14742-x
    [19] S. W. Koh, J. Hu, J. Hwang, P. Yu, Z. Sun, Q. Liu, W. Hong, J. Ge, J. Fei, and B. Han, Mater. Chem. Front. 5, 4970 (2021). doi: 10.1039/D0QM01113D
    [20] J. S. Lopez, R. A. Dagle, V. L. Dagle, C. Smith, and K. O. Albrecht, Catal. Sci. Technol. 9, 1117 (2019). doi: 10.1039/C8CY02297F
    [21] X. Y. Guo, X. S. Guo, and Y. Suzuki, ChemistrySelect 5, 528 (2020). doi: 10.1002/slct.201903665
    [22] J. Y. Zhang, E. Yoo, B. H. Davison, D. Liu, J. A. Schaidle, L. Tao, and Z. L. Li, Green Chem. 23, 9534 (2021). doi: 10.1039/D1GC02854E
    [23] X. Y. Guo, L. S. Guo, Y. Zeng, R. Kosol, X. H. Gao, Y. Yoneyama, G. H. Yang, and N. Tsubaki, Catal. Today 368, 196 (2021). doi: 10.1016/j.cattod.2020.04.047
    [24] E. Aghaei and M. Haghighi, Microporous Mesoporous Mater. 270, 227 (2018). doi: 10.1016/j.micromeso.2018.05.011
    [25] Y. T. He, L. J. Zhu, Y. H. Luo, M. H. Fan, M. Y. Yang, Y. H. Zhang, and Q. X. Li, Fuel Process. Technol. 213, 106674 (2021). doi: 10.1016/j.fuproc.2020.106674
    [26] Y. T. He, Y. H. Luo, M. Y. Yang, Y. H. Zhang, L. J. Zhu, M. H. Fan, and Q. X. Li, Appl. Catal. A Gen. 630, 118440 (2022). doi: 10.1016/j.apcata.2021.118440
    [27] X. J. Niu, J. Gao, Q. Miao, M. Dong, G. F. Wang, W. B. Fan, Z. F. Qin, and J. G. Wang, Micropor. Mesopor. Mat. 197, 252 (2014). doi: 10.1016/j.micromeso.2014.06.027
    [28] L. J. Zhu, Y. H. Luo, Y. T. He, M. Y. Yang, Y. H. Zhang, M. H. Fan, and Q. X. Li, Mol. Catal. 517, 112063 (2022). doi: 10.1016/j.mcat.2021.112063
    [29] Y. H. Luo, L. J. Zhu, Y. T. He, M. Y. Yang, Y. H. Zhang, M. H. Fan, and Q. X. Li, Cellulose 29, 303 (2022). doi: 10.1007/s10570-021-04285-9
    [30] Y. H. Zhang, X. P. Wu, Y. T. He, Y. H. Luo, M. Y. Yang, M. H. Fan, and Q. X. Li, J. Chem. Technol. Biotechnol. 97, 2068 (2022). doi: 10.1002/jctb.7077
    [31] M. Y. Yang, X. P. Wu, Y. T. He, Y. H. Luo, Y. H. Zhang, M. H. Fan, and Q. X. Li, Cellulose 29, 5557 (2022). doi: 10.1007/s10570-022-04625-3
    [32] Y. T. He, Y. H. Luo, M. Y. Yang, Y. H. Zhang, M. H. Fan, and Q. X. Li, Catal. Sci. Technol. 12, 4524 (2022). doi: 10.1039/D2CY00382A
    [33] C. P. Nash, A. Ramanathan, D. A. Ruddy, M. Behl, E. Gjersing, M. Griffin, H. D. Zhu, B. Subramaniam, J. A. Schaidle, and J. E. Hensley, Appl. Catal. A Gen. 510, 110 (2016). doi: 10.1016/j.apcata.2015.11.019
    [34] A. Martinez, M. A. Arribas, P. Concepcion, and S. Moussa, Appl. Catal. A Gen. 467, 509 (2013). doi: 10.1016/j.apcata.2013.08.021
    [35] S. X. Tian, S. F. Ji, D. D. Lu, B. Y. Bai, and Q. Sun, J. Energy Chem. 22, 605 (2013). doi: 10.1016/S2095-4956(13)60079-0
    [36] E. Aghaei and M Haghighi, Microporous Mesoporous Mater. 270, 227 (2018). doi: 10.1016/j.micromeso.2018.05.011
    [37] D. Z. Zhang, Y. X. Wei, L. Xu, F. X. Chang, Z. Y. Liu, S. H. Meng, B. L. Su, and Z. M. Liu, Microporous Mesoporous Mater. 116, 684 (2008). doi: 10.1016/j.micromeso.2008.06.001
    [38] A. G. Popov, V. S. Pavlov, and I. I. Ivanova, J. Catal. 335, 155 (2016). doi: 10.1016/j.jcat.2015.12.008
    [39] H. Konno, T. Tago, Y. Nakasaka, G. Watanabe, and T. Masuda, Appl. Catal. A Gen. 475, 127 (2014). doi: 10.1016/j.apcata.2014.01.031
    [40] T. Tago, H. Konno, M. Sakamoto, Y. Nakasaka, and T. Masuda, Appl. Catal. A Gen. 403, 183 (2011). doi: 10.1016/j.apcata.2011.06.029
  • suppl_data.zip
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  115
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-17
  • 录用日期:  2023-03-20
  • 网络出版日期:  2023-03-22

目录

    /

    返回文章
    返回