Selective Preparation of Light Olefins from Cellulose-Derived Fermentation Intermediates
-
Abstract: Directional synthesis of bio-based light olefins has great significance for promoting sustainable development of chemical industry. Present work proves that light olefins can be selectively prepared from the cellulose-derived acetone-butanol-ethanol. This transformation has been achieved by coupling cellulose fermentation and acetone-butanol-ethanol catalytic dehydration over the Ce@SAPO-34 catalyst. The active sites and reusability of the catalyst were investigated. High acetone-butanol-ethanol conversion (91.9%) and high olefin selectivity (86.1%) are achieved. Based on the study of the individual components in acetone-butanol-ethanol, the reaction pathways are put forward.
-
Figure 5. Catalyst stability and reusability in the production of light olefins from the dehydrated ABE. Reaction condition: 2 g Ce/SAPO34 catalyst, 2 g dehydrated ABE, T=350 °C. Regeneration condition: T=550 °C, t=2 h. (a) Conversion, olefin yield and carbon balance, (b) selectivity of different products.
Table I. Production of light-olefins from the dehydrated ABE using different catalysts. C: conversion, Solefin: olefin selectivity, Saromatics: aromatics selectivity, and Yolefin: olefin yield. Reaction conditions: 2 g catalyst, 2 g dehydrated ABE, T=350 °C.
Catalysts C/% Solefin/% Saromatics/% Yolefin/% Al-MCM-41 89.5 49.9 19.2 44.7 HZSM-5 92.5 51.5 24.5 47.6 Ce/SAPO-34 91.9 86.1 4.4 79.1 SAPO-34 93.2 82.7 6.5 77.1 Hβ 90.8 56.6 20.2 51.4 Table II. Main characteristics of catalysts. SBET: Brunauer-Emmet-Teller surface area in m2/g, Vp: pore-volume in cm3/g, Total acidity in µmol NH3/g, B/L: Bronsted/Lewis acid ratio and S/W: strong/weak acid ratio.
Catalysts SBET Vp Total acidity B/L S/W HZSM-5 455 0.22 580 5.5 0.9 Hβ 608 0.31 303 0.4 0.7 Al-MCM-41 1020 0.52 264 1.7 0.3 SAPO-34 592 0.30 1393 0.6 Ce@SAPO-34 408 0.18 1027 0.3 -
[1] J. P. Ma, S. Shi, X. Q. Jia, F. Xia, H. Ma, J. Gao, and J. Xie, J. Energy Chem. 36, 74 (2019). doi: 10.1016/j.jechem.2019.04.026 [2] L. F. Zhu, X. Fu, Y. X. Hu, and C. W. Hu, ChemSusChem 13, 4812 (2020). doi: 10.1002/cssc.202001341 [3] X. Liu, T. F. Li, S. B. Wu, H. Ma, and Y. H. Yin, Bioresour. Technol. 310, 123460 (2020). doi: 10.1016/j.biortech.2020.123460 [4] Z. Y. Li, Z. P. Zhong, B. Zhang, W. Wang, G. V. S. Seufitelli, and F. L. P. Resende, Waste Manage. 102, 561 (2020). doi: 10.1016/j.wasman.2019.11.012 [5] S. K. Bhatia, S. H. Kim, J. J. Yoon, and Y. H. Yang, Energy Convers. Manage. 148, 1142 (2017). doi: 10.1016/j.enconman.2017.06.073 [6] Y. Guo, Y. Liu, M. D. Guan, H. C. Tang, Z. L. Wang, L. H. Lin, and H. Pang, RSC Adv. 12, 18848 (2022). doi: 10.1039/D1RA09396G [7] P. X. Wang, J. Zhang, J. Feng, S. J. Wang, L. Guo, Y. F. Wang, Y. Y. Lee, S. Taylor, T. McDonald, and Y. Wang, Bioresour. Technol. 281, 217 (2019). doi: 10.1016/j.biortech.2019.02.096 [8] C. Xue, M. Liu, X. W. Guo, E. P. Hudson, L. J. Chen, F. W. Bai, F. F. Liu, and S. T. Yang, Green Chem. 19, 660 (2017). doi: 10.1039/C6GC02546C [9] Z. Q. Wen, R. Ledesma-Amaro, M. R. Lu, M. J. Jin, and S. Yang, ACS Synth. Biol. 9, 304 (2020). doi: 10.1021/acssynbio.9b00331 [10] F. Cebreiros, M. D. Ferrari, and C. Lareo, Ind. Crop. Prod. 134, 50 (2019). doi: 10.1016/j.indcrop.2019.03.059 [11] J. W. Wu, L. L. Dong, B. F. Liu, D. F. Xing, C. S. Zhou, Q. Wang, X. K. Wu, L. P. Feng, and G. L. Cao, Environ. Res. 186, 109580 (2020). doi: 10.1016/j.envres.2020.109580 [12] P. Anbarasan, Z. C. Baer, S. Sreekumar, E. Gross, J. B. Binder, H. W. Blanch, D. S. Clark, and F. D. Toste, Nature 491, 235 (2012). doi: 10.1038/nature11594 [13] M. A. Diaz-Perez and J. C. Serrano-Ruiz, Molecules 25, 802 (2020). doi: 10.3390/molecules25040802 [14] B. H. H. Goh, C. T. Chong, H. C. Ong, T. Seljak, T. Katrasnik, V. Jozsa, J. H. Ng, B. Tian, S. Karmarkar, and V. Ashokkumarh, Energy Convers. Manage. 251, 114974 (2022). doi: 10.1016/j.enconman.2021.114974 [15] Y. Chen, Y. L. Wu, L. Tao, B. Dai, M. D. Yang, Z. Chen, and X. Y. Zhu, J. Ind. Eng. Chem. 16, 717 (2010). doi: 10.1016/j.jiec.2010.07.013 [16] M. A. Perez, R. Bringue, M. Iborra, J. Tejero, and F. Cunill, Appl. Catal. A Gen. 482, 38 (2014). doi: 10.1016/j.apcata.2014.05.017 [17] K. Cheng, B. Gu, X. Liu, J. Kang, Q. Zhang, and Y. Wang, Angew. Chem. Int. Ed. 55, 4725 (2016). doi: 10.1002/anie.201601208 [18] S. X. Bai, F. F. Liu, B. L. Huang, F. Li, H. P. Lin, T. Wu, M. Z. Sun, J. B. Wu, Q. Shao, Y. Xu, and X. Q. Huang, Nat. Commun. 11, 954 (2020). doi: 10.1038/s41467-020-14742-x [19] S. W. Koh, J. Hu, J. Hwang, P. Yu, Z. Sun, Q. Liu, W. Hong, J. Ge, J. Fei, and B. Han, Mater. Chem. Front. 5, 4970 (2021). doi: 10.1039/D0QM01113D [20] J. S. Lopez, R. A. Dagle, V. L. Dagle, C. Smith, and K. O. Albrecht, Catal. Sci. Technol. 9, 1117 (2019). doi: 10.1039/C8CY02297F [21] X. Y. Guo, X. S. Guo, and Y. Suzuki, ChemistrySelect 5, 528 (2020). doi: 10.1002/slct.201903665 [22] J. Y. Zhang, E. Yoo, B. H. Davison, D. Liu, J. A. Schaidle, L. Tao, and Z. L. Li, Green Chem. 23, 9534 (2021). doi: 10.1039/D1GC02854E [23] X. Y. Guo, L. S. Guo, Y. Zeng, R. Kosol, X. H. Gao, Y. Yoneyama, G. H. Yang, and N. Tsubaki, Catal. Today 368, 196 (2021). doi: 10.1016/j.cattod.2020.04.047 [24] E. Aghaei and M. Haghighi, Microporous Mesoporous Mater. 270, 227 (2018). doi: 10.1016/j.micromeso.2018.05.011 [25] Y. T. He, L. J. Zhu, Y. H. Luo, M. H. Fan, M. Y. Yang, Y. H. Zhang, and Q. X. Li, Fuel Process. Technol. 213, 106674 (2021). doi: 10.1016/j.fuproc.2020.106674 [26] Y. T. He, Y. H. Luo, M. Y. Yang, Y. H. Zhang, L. J. Zhu, M. H. Fan, and Q. X. Li, Appl. Catal. A Gen. 630, 118440 (2022). doi: 10.1016/j.apcata.2021.118440 [27] X. J. Niu, J. Gao, Q. Miao, M. Dong, G. F. Wang, W. B. Fan, Z. F. Qin, and J. G. Wang, Micropor. Mesopor. Mat. 197, 252 (2014). doi: 10.1016/j.micromeso.2014.06.027 [28] L. J. Zhu, Y. H. Luo, Y. T. He, M. Y. Yang, Y. H. Zhang, M. H. Fan, and Q. X. Li, Mol. Catal. 517, 112063 (2022). doi: 10.1016/j.mcat.2021.112063 [29] Y. H. Luo, L. J. Zhu, Y. T. He, M. Y. Yang, Y. H. Zhang, M. H. Fan, and Q. X. Li, Cellulose 29, 303 (2022). doi: 10.1007/s10570-021-04285-9 [30] Y. H. Zhang, X. P. Wu, Y. T. He, Y. H. Luo, M. Y. Yang, M. H. Fan, and Q. X. Li, J. Chem. Technol. Biotechnol. 97, 2068 (2022). doi: 10.1002/jctb.7077 [31] M. Y. Yang, X. P. Wu, Y. T. He, Y. H. Luo, Y. H. Zhang, M. H. Fan, and Q. X. Li, Cellulose 29, 5557 (2022). doi: 10.1007/s10570-022-04625-3 [32] Y. T. He, Y. H. Luo, M. Y. Yang, Y. H. Zhang, M. H. Fan, and Q. X. Li, Catal. Sci. Technol. 12, 4524 (2022). doi: 10.1039/D2CY00382A [33] C. P. Nash, A. Ramanathan, D. A. Ruddy, M. Behl, E. Gjersing, M. Griffin, H. D. Zhu, B. Subramaniam, J. A. Schaidle, and J. E. Hensley, Appl. Catal. A Gen. 510, 110 (2016). doi: 10.1016/j.apcata.2015.11.019 [34] A. Martinez, M. A. Arribas, P. Concepcion, and S. Moussa, Appl. Catal. A Gen. 467, 509 (2013). doi: 10.1016/j.apcata.2013.08.021 [35] S. X. Tian, S. F. Ji, D. D. Lu, B. Y. Bai, and Q. Sun, J. Energy Chem. 22, 605 (2013). doi: 10.1016/S2095-4956(13)60079-0 [36] E. Aghaei and M Haghighi, Microporous Mesoporous Mater. 270, 227 (2018). doi: 10.1016/j.micromeso.2018.05.011 [37] D. Z. Zhang, Y. X. Wei, L. Xu, F. X. Chang, Z. Y. Liu, S. H. Meng, B. L. Su, and Z. M. Liu, Microporous Mesoporous Mater. 116, 684 (2008). doi: 10.1016/j.micromeso.2008.06.001 [38] A. G. Popov, V. S. Pavlov, and I. I. Ivanova, J. Catal. 335, 155 (2016). doi: 10.1016/j.jcat.2015.12.008 [39] H. Konno, T. Tago, Y. Nakasaka, G. Watanabe, and T. Masuda, Appl. Catal. A Gen. 475, 127 (2014). doi: 10.1016/j.apcata.2014.01.031 [40] T. Tago, H. Konno, M. Sakamoto, Y. Nakasaka, and T. Masuda, Appl. Catal. A Gen. 403, 183 (2011). doi: 10.1016/j.apcata.2011.06.029 -
suppl_data.zip
-