Ion-Velocity Imaging Study of Dissociative Charge Exchange Reactions between Ar+ and trans-/cis-Dichloroethylene
-
Abstract: Dissociative charge exchange reactions between Ar+ ion and trans-/cis-dichloroethylene (trans-/cis-C2H2Cl2) are investigated with the ion-velocity imaging technique. The dechlorinated product C2H2Cl+ is the predominant, and most of this product show the spatial distribution around the target, implying that the dissociation occurs in the large impact-parameter collision and via the energy resonant charge transfer. Meanwhile, a few C2H2Cl+ locate around the center-of-mass, which is attributed to the fragmentation of intimate association between C2H2Cl2 and Ar+ or in the small impact-parameter collision. The product C2HCl+ exhibits the velocity distribution features similar to those of C2H2Cl+. The rarest product C2HCl2+ shows the distributions around the molecular target, due to the quick dehydrogenation after the energy-resonant charge transfer in the large impact-parameter collision.
-
Figure 1. Time-sliced images of C2H235Cl+ (upper) and C2H35Cl+ (bottom) produced in the DCE reactions between Ar+ and trans-C2H2Cl2 at the center-of-mass collision energies of 3.82, 5.38, and 9.33 eV. The red circles embedded on each image indicate the velocity position of the parent ion C2H235Cl2+ produced in the energy-resonant CT from Ar+(2P3/2) to trans-C2H235Cl2. The white arrows represent the velocities of Ar+ (right pointing, backward scattering, here the velocities are too large to show all in the images within the scale) and trans-C2H2Cl2 (left pointing, forward scattering) in the center-of-mass (a white point in the image center) coordinate.
Figure 2. Energy distributions of the DCE product C2H235Cl+ (a) and C2H35Cl+ (b) from trans-C2H2Cl2 at the center-of-mass collision energies of 3.82, 5.38, and 9.33 eV. The products distributing within the range of scattering angle θ = ±10° are selected for plotting. The dashed lines denote the energy-resonant CT position (corresponding to the red circles in FIG. 1). Angular distributions of the product C2H235Cl+ (c) and C2H35Cl+ (d) in the velocity range of ±500 m/s centering on the energy-resonant CT velocity.
Figure 3. Time-sliced images of C2H235Cl+ (upper) and C2H35Cl+ (bottom) produced in the DCE reactions between Ar+ and cis-C2H2Cl2 at the center-of-mass collision energies of 2.17 and 4.05 eV. The red circles embedded on each image indicate the velocity position of the parent ion C2H235Cl2+ product in the energy-resonant charge transfer from Ar+(2P3/2) to cis-C2H235Cl2. The white arrows represent the velocities of Ar+ (right pointing, backward scattering, the velocities are too large to show all in the images within the scale at 4.05 eV) and cis-C2H2Cl2 (left pointing, forward scattering) in the center-of-mass (a white point in the image center) coordinate.
Figure 4. Energy distributions of the DCE product C2H235Cl+ (a) and C2H35Cl+ (b) from cis- C2H2Cl2 at the center-of-mass collision energies of 2.17 and 4.05 eV. The products distributing within the range of scattering angle θ = ±10° are selected for plotting. The dashed lines denote the energy-resonant CT position (corresponding to the red circles in FIG. 3). Angular distributions of the product C2H235Cl+ (c) and C2H35Cl+ (d) in the velocity range of ±500 m/s centering on the energy-resonant CT velocity.
Figure 5. Time-sliced images of C2H35Cl2+ produced in the DCE reactions between Ar+ and trans-C2H2Cl2 at the center-of-mass collision energies of 2.13 eV (a), 3.11 eV (b), 4.27 eV (c), and 9.33 eV(d) . The red circles, white arrows and white point embedded on each image indicate the same with FIG. 1.
-
[1] N. M. Semo and W. S. Koski, J. Phys. Chem. 88, 5320 (1984). doi: 10.1021/j150666a042 [2] K. L. Williams, I. T. Martin, and E. R. Fisher, J. Am. Soc. Mass Spectrom. 13, 518 (2002). doi: 10.1016/S1044-0305(02)00371-9 [3] M. Larsson, W. D. Geppert, and G. Nyman, Rep. Prog. Phys. 75, 066901 (2012). doi: 10.1088/0034-4885/75/6/066901 [4] C. Y. Ng and M. Baer, State-Selected and State-to-State Ion-Molecule Reaction Dynamics, New York: John Wiley & Sons, Inc., (1992). [5] C. X. Wu, J. Hu, M. M. He, and S. X. Tian, J. Phys. Chem. A 123, 8536 (2019). doi: 10.1021/acs.jpca.9b06607 [6] J. Hu, C. X. Wu, and S. X. Tian, Rev. Sci. Instrum. 89, 066104 (2018). doi: 10.1063/1.5026822 [7] C. X. Wu, J. Hu, M. M. He, Y. Zhi, and S. X. Tian, Phys. Chem. Chem. Phys. 22, 4640 (2020). doi: 10.1039/C9CP06289K [8] M. M. He, J. Hu, C. X. Wu, Y. Zhi, and S. X. Tian, J. Phys. Chem. A 124, 3358 (2020). doi: 10.1021/acs.jpca.0c02047 [9] L. Pei and J. M. Farrar, Int. J. Mass Spectrom. 377, 93 (2015). doi: 10.1016/j.ijms.2014.07.007 [10] L. Pei and J. M. Farrar, J. Chem. Phys. 143, 084304 (2015). doi: 10.1063/1.4929389 [11] J. Hu, C. X. Wu, Y. Zhi, J. C. Xie, M. M. He, and S. X. Tian, J. Phys. Chem. Lett. 12, 1346 (2021). doi: 10.1021/acs.jpclett.0c03601 [12] J. Hu, Y. Zhi, J. C. Xie, C. X. Wu, and S. X. Tian, J. Phys. Chem. Lett. 12, 7127 (2021). doi: 10.1021/acs.jpclett.1c01980 [13] J. Hu and S. X. Tian, Acta Chim. Sin. 80, 535 (2022). doi: 10.6023/A21120584 [14] Y. Zhi, J. Hu, J. C. Xie, and S. X. Tian, J. Phys. Chem. A 125, 2573 (2021). doi: 10.1021/acs.jpca.1c00754 [15] T. Yamada, A. el-Sinawi, M. Siraj, P. H. Taylor, J. Peng, X. Hu, and P. Marshall, J. Phys. Chem. A 105, 7588 (2001). doi: https://doi.org/10.1021/jp0109067 [16] M. A. Parkes, S. Ali, C. R. Howle, R. P. Tuckett, and A. E. R. Malins, Mol. Phys. 105, 907 (2007). doi: 10.1080/00268970600976055 [17] A. Bodi, W. R. Stevens, and T. Baer, J. Phys. Chem. A 115, 726 (2011). doi: 10.1021/jp110831q [18] V. A. Mikhailov, M. A. Parkes, R. P. Tuckett, and C. A. Mayhew, J. Phys. Chem. A 110, 5760 (2006). doi: 10.1021/jp060093s [19] K. Ohno, N. Kishimoto, and H. Yamakado, J. Phys. Chem. 99, 9687 (1995). doi: 10.1021/j100024a008 [20] R. D. Levine, Molecular Reaction Dynamics, New York: Cambridge University Press, (2005). -