Ultrafast Proton Coupled Electron Transfer between Tryptophan and Tyrosine in Peptides Trp-Pron-Tyr

Haoyang Li Simin Cao Sanjun Zhang Jinquan Chen Jianhua Xu

Haoyang Li, Simin Cao, Sanjun Zhang, Jinquan Chen, Jianhua Xu. Ultrafast Proton Coupled Electron Transfer between Tryptophan and Tyrosine in Peptides Trp-Pron-Tyr[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2212181
Citation: Haoyang Li, Simin Cao, Sanjun Zhang, Jinquan Chen, Jianhua Xu. Ultrafast Proton Coupled Electron Transfer between Tryptophan and Tyrosine in Peptides Trp-Pron-Tyr[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2212181

doi: 10.1063/1674-0068/cjcp2212181

Ultrafast Proton Coupled Electron Transfer between Tryptophan and Tyrosine in Peptides Trp-Pron-Tyr

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Normalized absorption spectra (A, B, and C) and fluorescence spectra (D, E, and F) of W, WP, and WPnY (n=0, 1, 2, 3, 5) at three typical pH values (pH=3, 7, and 10). The excitation wavelength in the fluorescence spectra (D–F) is 295 nm.

    Figure  2.  Normalized nanosecond time-resolved fluorescence decay curves of W, WP, and WPnY (n=0, 1, 2, 3, 5) with pH=3 (A), 7 (B), and 10 (C). All fluorescence decay curves are excited at 295 nm.

    Figure  3.  Femtosecond TA spectra of W (A), WY (B), WP (C), WPY (D), WP2Y (E), WP3Y (F), and WP5Y (G) at pH=3 with the excitation wavelength at 295 nm, respectively. Time window is from 2 ps to 7 ns.

    Figure  4.  Femtosecond TA spectra of W (A), WY (B), WP (C), WPY (D), WP2Y (E), WP3Y (F), and WP5Y (G) at pH=7 with the excitation wavelength at 295 nm, respectively. Time window is from 2 ps to 7 ns.

    Figure  5.  Femtosecond TA spectra of W (A), WY (B), WP (C), WPY (D), WP2Y (E), WP3Y (F), and WP5Y (G) at pH=10 with the excitation wavelength at 295 nm, respectively. Time window is from 2 ps to 7 ns.

    Figure  6.  Normalized femtosecond TA kinetics (at 580 nm) of W, WP and WPnY (n=0, 1, 2, 3, 5) with pH=3 (A), 7 (B) and 10 (C), respectively. The data collected by the TA system are represented by circles, and the fitting results are represented by lines.

    Table  I.   The lifetimes ($ {\tau }_{n} $ in unit of ns) and amplitudes ($A_{n}$ in unit of %) of W, WP, and WPnY (n =0, 1, 2, 3, 5) by fitting the decay curves obtained from TCSPC. The average lifetime (om TCSPC. The average lifetime (${\tau }_{\rm{ave}}$ in unit of ns) was also calculated.

    Peptide pH=3 pH=7 pH=10
    $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $ ${\tau }_{\rm{ave}}$ $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $ $A_{3}$ $ {\tau }_{3} $ ${\tau }_{\rm{ave}}$ $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $ $A_{3}$ $ {\tau }_{3} $ ${\tau }_{\rm{ave}}$
    W 28 0.45 72 2.71 2.57 5 0.40 95 2.90 2.88 42 2.49 58 8.28 7.24
    WY 44 0.59 56 1.69 1.45 29 0.29 50 1.61 21 4.93 3.31 11 0.36 19 1.74 70 4.97 4.64
    WP 68 0.40 32 2.01 1.53 61 0.35 29 2.25 10 6.06 3.50 11 0.59 69 4.32 20 7.53 5.32
    WPY 61 0.32 39 1.73 1.40 56 0.22 32 1.35 12 3.27 2.00 56 0.20 25 1.42 19 3.36 2.42
    WP2Y 53 0.31 47 2.05 1.80 50 0.23 42 2.03 8 5.82 3.10 23 0.52 44 2.32 33 5.70 4.36
    WP3Y 52 0.30 48 2.06 1.82 55 0.24 39 2.10 6 6.80 3.33 16 0.37 46 2.24 38 6.43 5.09
    WP5Y 55 0.27 45 2.16 1.90 52 0.22 41 2.11 7 6.97 3.56 11 0.49 49 2.31 40 7.21 5.77
    下载: 导出CSV

    Table  II.   The lifetimes ($ {\tau }_{n} $ in unit of ns) and amplitudes ($A_{n}$ in unit of %) by fitting the decay curves obtained in FIG. 6.

    Peptide pH=3 pH=7 pH=10
    $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $ $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $ $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $
    W 43 1.03 57 8.43 50 2.57 50 6.98 100 12.30
    WY 56 0.57 44 7.35 50 0.96 50 6.74 11 0.12 89 10.92
    WP 64 0.30 36 4.94 69 0.37 31 6.54 19 0.11 81 11.87
    WPY 58 0.126 42 3.22 64 0.15 36 2.59 59 0.08 41 9.54
    WP2Y 58 0.17 42 3.89 57 0.29 43 4.18 35 0.14 65 9.76
    WP3Y 50 0.23 50 4.23 54 0.25 46 5.00 37 0.12 63 11.13
    WP5Y 59 0.27 41 5.08 58 0.23 42 5.05 33 0.15 67 10.06
    下载: 导出CSV
  • [1] C. R. Cantor and P. R. Schimmel, Biophysical Chemistry: Part II: Techniques for the Study of Biological Structure and Function, New York: Macmillan, (1980).
    [2] P. R. Callis, Methods in Enzymology, Amsterdam: Elsevier, 113 (1997).
    [3] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, New York: Springer Science & Business Media, (2013).
    [4] S. J. Kroes, G. W. Canters, G. Gilardi, A. van Hoek, and A. J. Visser, Biophys. J. 75, 2441 (1998). doi: 10.1016/S0006-3495(98)77688-X
    [5] M. Gonnelli and G. B. Strambini, Biophys. J. 104, 155 (2003). doi: 10.1016/S0301-4622(02)00364-2
    [6] J. Xu, T. Dmitri, K. J. Graver, R. A. Albertini, R. S. Savtchenko, N. D. Meadow, R. Saul, P. R. Callis, B. Ludwig, and J. R. Knutson, J. Am. Chem. Soc. 128, 1214 (2006). doi: 10.1021/ja055746h
    [7] J. Xu and J. R. Knutson, J. Phys. Chem. B 113, 12084 (2009). doi: 10.1021/jp903078x
    [8] J. Xu, J. Chen, D. Toptygin, O. Tcherkasskaya, P. Callis, J. King, L. Brand, and J. R. Knutson, J. Am. Chem. Soc. 131, 16751 (2009). doi: 10.1021/ja904857t
    [9] A. Biesso, J. Xu, P. L. Muino, P. R. Callis, and J. R. Knutson, J. Am. Chem. Soc. 136, 2739 (2014). doi: 10.1021/ja406126a
    [10] J. Xu, B. Chen, P. Callis, P. L. Muino, H. Rozeboom, J. Broos, D. Toptygin, L. Brand, and J. R. Knutson, J. Phys. Chem. B 119, 4230 (2015). doi: 10.1021/acs.jpcb.5b01651
    [11] P. Jorge, P. Samir Kumar, and A. H. Zewail, Proc. Natl. Acad. Sci. USA 99, 10964 (2002). doi: 10.1073/pnas.162366099
    [12] S. K. Pal, J. Peon, and A. H. Zewail, Proc. Natl. Acad. Sci. USA 99, 1763 (2002). doi: 10.1073/pnas.042697899
    [13] S. K. Pal, J. Peon, and A. H. Zewail, Proc. Natl. Acad. Sci. USA 99, 15297 (2002). doi: 10.1073/pnas.242600399
    [14] D. Zhong, S. K. Pal, and A. H. Zewail, Chem. Phys. Lett. 503, 1 (2011). doi: 10.1016/j.cplett.2010.12.077
    [15] G. Weber, Biochem. J. 75, 335 (1960). doi: 10.1042/bj0750335
    [16] G. Weber, Biochem. J. 75, 345 (1960). doi: 10.1042/bj0750345
    [17] R. F. Borkman and S. R. Phillips, Exp. Eye Res. 40, 819 (1985). doi: 10.1016/0014-4835(85)90127-7
    [18] M. Faraggi, M. R. DeFelippis, and M. H. Klapper, J. Am. Chem. Soc. 111, 5141 (1989). doi: 10.1021/ja00196a019
    [19] M. Weinstein, Z. B. Alfassi, M. R. DeFelippis, M. H. Klapper, and M. Faraggi, Biochim. Biophys. Acta Prot. Struct. Mol. Enzymol. 1076, 173 (1991). doi: 10.1016/0167-4838(91)90262-X
    [20] K. Bobrowski, J. Holcman, J. Poznanski, M. Ciurak, and K. L. Wierzchowski, J. Phys. Chem. 96, 10036 (1992). doi: 10.1021/j100203a082
    [21] A. K. Mishra, R. Chandrasekar, M. Faraggi, and M. H. Klapper, J. Am. Chem. Soc. 116, 1414 (1994). doi: 10.1021/ja00083a029
    [22] K. Bobrowski, J. Poznański, J. Holcman, and K. L. Wierzchowski, J. Phys. Chem. B 103, 10316 (1999). doi: 10.1021/jp992178h
    [23] O. B. Morozova, R. Kaptein, and A. V. Yurkovskaya, J. Phys. Chem. B 116, 12221 (2012). doi: 10.1021/jp307956q
    [24] H. Li, G. Jiang, M. Jia, S. Cao, S. Zhang, J. Chen, H. Sun, J. Xu, and J. R. Knutson, Phys. Chem. Chem. Phys. 24, 18055 (2022). doi: 10.1039/D2CP02139K
    [25] J. Butler, E. J. Land, W. A. Prütz, and A. J. Swallow, Biochim. Biophys. Acta Prot. Struct. Mol. Enzymol. 705, 150 (1982). doi: 10.1016/0167-4838(82)90173-X
    [26] C. Y. Lee, FEBS Lett. 299, 119 (1992). doi: 10.1016/0014-5793(92)80228-9
    [27] J. Stubbe and W. A. van Der Donk, Chem. Rev. 98, 2661 (1998). doi: 10.1021/cr980059c
    [28] R. Joshi and T. Mukherjee, Biophys. Chem. 103, 89 (2003). doi: 10.1016/S0301-4622(02)00234-X
    [29] K. Bobrowski, J. Holcman, J. Poznanski, and K. L. Wierzchowski, Biophys. Chem. 63, 153 (1997). doi: 10.1016/S0301-4622(96)02226-0
    [30] K. Yamaguchi, K. Shuta, and S. Suzuki, Biochem. Biophys. Res. Commun. 336, 210 (2005). doi: 10.1016/j.bbrc.2005.08.076
    [31] J. M. Bollinger Jr, W. H. Tong, N. Ravi, B. H. Huynh, D. E. Edmondson, and J. Stubbe, J. Am. Chem. Soc. 116, 8024 (1994). doi: 10.1021/ja00097a009
    [32] M. H. V. Huynh and T. J. Meyer, Chem. Rev. 107, 5004 (2007). doi: 10.1021/cr0500030
    [33] D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, and T. J. Meyer, Chem. Rev. 112, 4016 (2012). doi: 10.1021/cr200177j
    [34] B. Koronkiewicz, J. Swierk, K. Regan, and J. M. Mayer, J. Am. Chem. Soc. 142, 12106 (2020). doi: 10.1021/jacs.0c01429
    [35] P. Li, A. V. Soudackov, B. Koronkiewicz, J. M. Mayer, and S. Hammes-Schiffer, J. Am. Chem. Soc. 142, 13795 (2020). doi: 10.1021/jacs.0c04716
    [36] C. V. Pagba, T. G. McCaslin, G. Veglia, F. Porcelli, J. Yohannan, Z. Guo, M. McDaniel, and B. A. Barry, Nat. Commun. 6, 10010 (2015). doi: 10.1038/ncomms10010
    [37] T. G. McCaslin, C. V. Pagba, S. H. Chi, H. J. Hwang, J. C. Gumbart, J. W. Perry, C. Olivieri, F. Porcelli, G. Veglia, and Z. Guo, J. Phys. Chem. B 123, 2780 (2019). doi: 10.1021/acs.jpcb.8b12452
    [38] T. G. McCaslin, C. V. Pagba, H. Hwang, J. C. Gumbart, S. H. Chi, J. W. Perry, and B. A. Barry, Chem. Commun. 55, 9399 (2019). doi: 10.1039/C9CC04067F
    [39] P. Nordlund, B. M. Sjöberg, and H. Eklund, Nature 345, 593 (1990). doi: 10.1038/345593a0
    [40] H. B. Gray and J. R. Winkler, Proc. Natl. Acad. Sci. USA 112, 10920 (2015). doi: 10.1073/pnas.1512704112
    [41] J. R. Winkler and H. B. Gray, Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 373, 20140178 (2015). doi: 10.1098/rsta.2014.0178
    [42] E. C. Minnihan, D. G. Nocera, and J. Stubbe, Acc. Chem. Res. 46, 2524 (2013). doi: 10.1021/ar4000407
    [43] X. Chen, L. Zhang, L. Zhang, J. Wang, H. Liu, and Y. Bu, J. Phys. Chem. B 113, 16681 (2009). doi: 10.1021/jp9077689
    [44] M. Jia, H. Yi, M. Chang, X. Cao, L. Li, Z. Zhou, H. Pan, Y. Chen, S. Zhang, and J. Xu, J. Photochem. Photobiol.: Biology 149, 243 (2015). doi: 10.1016/j.jphotobiol.2015.06.014
    [45] Y. Y. Liu, H. F. Pan, J. H. Xu, and J. Q. Chen, Chin. J. Chem. Phys. 34, 621 (2021). doi: 10.1063/1674-0068/cjcp2012220
    [46] J. Léonard, D. Sharma, B. Szafarowicz, K. Torgasin, and S. Haacke, Phys. Chem. Chem. Phys. 12, 15744 (2010). doi: 10.1039/c0cp00615g
    [47] H. DeVoe and I. Tinoco Jr., J. Mol. Biol. 4, 518 (1962). doi: 10.1016/S0022-2836(62)80106-5
    [48] A. M. a. Blanco-Rodríguez, M. Towrie, J. Sykora, S. Záliš, and A. Vlcek Jr., Inorg. Chem. 50, 6122 (2011). doi: 10.1021/ic200252z
    [49] C. V. Pagba, S. H. Chi, J. Perry, and B. A. Barry, J. Phys. Chem. B 119, 2726 (2015). doi: 10.1021/jp510171z
    [50] J. M. Antosiewicz and D. Shugar, Biophys. Rev. 8, 151 (2016). doi: 10.1007/s12551-016-0198-6
    [51] E. Pieri, V. Ledentu, M. Huix-Rotllant, and N. Ferré, Phys. Chem. Chem. Phys. 20, 23252 (2018). doi: 10.1039/C8CP03557A
    [52] W. B. De Lauder, and P. Wahl, Biochemistry 9, 2750 (1970). doi: 10.1021/bi00815a025
    [53] D. M. Jameson and G. Weber, J. Phys. Chem. 85, 953 (1981). doi: 10.1021/j150608a007
    [54] L. Li, H. Yi, M. Chang, X. Cao, Z. Zhou, C. Qin, S. Zhang, H. Pan, Y. Chen, and J. Xu, Sci. Bull. 60, 2129 (2015). doi: 10.1007/s11434-015-0942-5
    [55] L. Li, X. Cao, Z. Zhou, S. Zhang, H. Pan, J. Chen, and J. Xu, J. Appl. Spectrosc. 84, 633 (2017). doi: 10.1007/s10812-017-0521-4
    [56] F. G. Prendergast, P. D. Hampton, and B. Jones, Biochemistry 23, 6690 (1984). doi: 10.1021/bi00321a063
    [57] S. Pundak and R. S. Roche, Biochemistry 23, 1549 (1984). doi: 10.1021/bi00302a032
    [58] K. J. Willis, A. G. Szabot, and D. T. Krajcarski, Photochem. Photobiol. 51, 375 (1990). doi: 10.1111/j.1751-1097.1990.tb01725.x
    [59] K. Willis and A. Szabo, J. Phys. Chem. 95, 1585 (1991). doi: 10.1021/j100157a015
    [60] J. Alexander Ross, W. R. Laws, K. W. Rousslang, and H. R. Wyssbrod, Topics in Fluorescence Spectroscopy, Springer, 1 (2002).
    [61] Y. P. Tsentalovich, O. A. Snytnikova, and R. Z. Sagdeev, J. Photochem. Photobiol. A Chem. 162, 371 (2004). doi: 10.1016/S1010-6030(03)00376-9
    [62] D. Bent and E. Hayon, J. Am. Chem. Soc. 97, 2612 (1975). doi: 10.1021/ja00843a004
    [63] K. L. Stevenson, G. A. Papadantonakis, and P. R. LeBreton, J. Photochem. Photobiol. A Chem. 133, 159 (2000). doi: 10.1016/S1010-6030(00)00235-5
    [64] J. Baugher and L. Grossweiner, J. Phys. Chem. 81, 1349 (1977). doi: 10.1021/j100529a002
    [65] S. Y. Reece, J. Stubbe, and D. G. Nocera, Biochim. Biophys. Acta Bioenerg. 1706, 232 (2005). doi: 10.1016/j.bbabio.2004.11.011
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  122
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 录用日期:  2023-02-22
  • 网络出版日期:  2023-02-24

目录

    /

    返回文章
    返回