Ultrafast Proton Coupled Electron Transfer between Tryptophan and Tyrosine in Peptides Trp-Pron-Tyr
-
Abstract: A series of model peptides (Trp–Pron–Tyr, WPnY, n=0, 1, 2, 3, 5), which contain tryptophan (Trp, W), tyrosine (Tyr, Y), and proline (Pro, P), have been studied under three typical pH conditions (3, 7, and 10) by steady-state absorption and fluorescence spectroscopy, nanosecond time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. When the peptide’s chain length is increased, Trp fluorescence quenching is expected to be gradually weakened. However, Trp fluorescence in WPY is strongly quenched and reveals even stronger quenching with increasing pH values, whose hypochromicity is clearly different from other model peptides. Transient absorption spectra also demonstrate that the excited state decay of WPY is much faster than that of other model peptides, especially at pH = 10. It is attributed to the efficient proton coupled electron transfer (PCET) between Trp and Tyr. Moreover, due to the very short distance between Trp and Tyr in WPY, this PCET process could be achieved by “direct transfer”, contrasted with the slow and long-range PCET process in other model peptides. Our results of the dipeptides WY and WP further suggest that Trp may also have more complex interactions with the peptide backbone or proline in those peptides. This work provides an experimental evidence for the electron transfer mechanism in WY dyads, which can help ones to understand how to reduce Trp radicals in proteins.
-
Key words:
- Proton coupled electron transfer /
- Tryptophan /
- Tyrosine /
- Peptides /
- Spectroscopy /
- Dynamics
-
Table I. The lifetimes (
$ {\tau }_{n} $ in unit of ns) and amplitudes ($A_{n}$ in unit of %) of W, WP, and WPnY (n =0, 1, 2, 3, 5) by fitting the decay curves obtained from TCSPC. The average lifetime (om TCSPC. The average lifetime (${\tau }_{\rm{ave}}$ in unit of ns) was also calculated.Peptide pH=3 pH=7 pH=10 $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $ ${\tau }_{\rm{ave}}$ $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $ $A_{3}$ $ {\tau }_{3} $ ${\tau }_{\rm{ave}}$ $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $ $A_{3}$ $ {\tau }_{3} $ ${\tau }_{\rm{ave}}$ W 28 0.45 72 2.71 2.57 5 0.40 95 2.90 – – 2.88 42 2.49 58 8.28 – – 7.24 WY 44 0.59 56 1.69 1.45 29 0.29 50 1.61 21 4.93 3.31 11 0.36 19 1.74 70 4.97 4.64 WP 68 0.40 32 2.01 1.53 61 0.35 29 2.25 10 6.06 3.50 11 0.59 69 4.32 20 7.53 5.32 WPY 61 0.32 39 1.73 1.40 56 0.22 32 1.35 12 3.27 2.00 56 0.20 25 1.42 19 3.36 2.42 WP2Y 53 0.31 47 2.05 1.80 50 0.23 42 2.03 8 5.82 3.10 23 0.52 44 2.32 33 5.70 4.36 WP3Y 52 0.30 48 2.06 1.82 55 0.24 39 2.10 6 6.80 3.33 16 0.37 46 2.24 38 6.43 5.09 WP5Y 55 0.27 45 2.16 1.90 52 0.22 41 2.11 7 6.97 3.56 11 0.49 49 2.31 40 7.21 5.77 Table II. The lifetimes (
$ {\tau }_{n} $ in unit of ns) and amplitudes ($A_{n}$ in unit of %) by fitting the decay curves obtained in FIG. 6.Peptide pH=3 pH=7 pH=10 $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $ $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $ $A_{1}$ $ {\tau }_{1} $ $A_{2}$ $ {\tau }_{2} $ W 43 1.03 57 8.43 50 2.57 50 6.98 100 12.30 – – WY 56 0.57 44 7.35 50 0.96 50 6.74 11 0.12 89 10.92 WP 64 0.30 36 4.94 69 0.37 31 6.54 19 0.11 81 11.87 WPY 58 0.126 42 3.22 64 0.15 36 2.59 59 0.08 41 9.54 WP2Y 58 0.17 42 3.89 57 0.29 43 4.18 35 0.14 65 9.76 WP3Y 50 0.23 50 4.23 54 0.25 46 5.00 37 0.12 63 11.13 WP5Y 59 0.27 41 5.08 58 0.23 42 5.05 33 0.15 67 10.06 -
[1] C. R. Cantor and P. R. Schimmel, Biophysical Chemistry: Part II: Techniques for the Study of Biological Structure and Function, New York: Macmillan, (1980). [2] P. R. Callis, Methods in Enzymology, Amsterdam: Elsevier, 113 (1997). [3] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, New York: Springer Science & Business Media, (2013). [4] S. J. Kroes, G. W. Canters, G. Gilardi, A. van Hoek, and A. J. Visser, Biophys. J. 75, 2441 (1998). doi: 10.1016/S0006-3495(98)77688-X [5] M. Gonnelli and G. B. Strambini, Biophys. J. 104, 155 (2003). doi: 10.1016/S0301-4622(02)00364-2 [6] J. Xu, T. Dmitri, K. J. Graver, R. A. Albertini, R. S. Savtchenko, N. D. Meadow, R. Saul, P. R. Callis, B. Ludwig, and J. R. Knutson, J. Am. Chem. Soc. 128, 1214 (2006). doi: 10.1021/ja055746h [7] J. Xu and J. R. Knutson, J. Phys. Chem. B 113, 12084 (2009). doi: 10.1021/jp903078x [8] J. Xu, J. Chen, D. Toptygin, O. Tcherkasskaya, P. Callis, J. King, L. Brand, and J. R. Knutson, J. Am. Chem. Soc. 131, 16751 (2009). doi: 10.1021/ja904857t [9] A. Biesso, J. Xu, P. L. Muino, P. R. Callis, and J. R. Knutson, J. Am. Chem. Soc. 136, 2739 (2014). doi: 10.1021/ja406126a [10] J. Xu, B. Chen, P. Callis, P. L. Muino, H. Rozeboom, J. Broos, D. Toptygin, L. Brand, and J. R. Knutson, J. Phys. Chem. B 119, 4230 (2015). doi: 10.1021/acs.jpcb.5b01651 [11] P. Jorge, P. Samir Kumar, and A. H. Zewail, Proc. Natl. Acad. Sci. USA 99, 10964 (2002). doi: 10.1073/pnas.162366099 [12] S. K. Pal, J. Peon, and A. H. Zewail, Proc. Natl. Acad. Sci. USA 99, 1763 (2002). doi: 10.1073/pnas.042697899 [13] S. K. Pal, J. Peon, and A. H. Zewail, Proc. Natl. Acad. Sci. USA 99, 15297 (2002). doi: 10.1073/pnas.242600399 [14] D. Zhong, S. K. Pal, and A. H. Zewail, Chem. Phys. Lett. 503, 1 (2011). doi: 10.1016/j.cplett.2010.12.077 [15] G. Weber, Biochem. J. 75, 335 (1960). doi: 10.1042/bj0750335 [16] G. Weber, Biochem. J. 75, 345 (1960). doi: 10.1042/bj0750345 [17] R. F. Borkman and S. R. Phillips, Exp. Eye Res. 40, 819 (1985). doi: 10.1016/0014-4835(85)90127-7 [18] M. Faraggi, M. R. DeFelippis, and M. H. Klapper, J. Am. Chem. Soc. 111, 5141 (1989). doi: 10.1021/ja00196a019 [19] M. Weinstein, Z. B. Alfassi, M. R. DeFelippis, M. H. Klapper, and M. Faraggi, Biochim. Biophys. Acta Prot. Struct. Mol. Enzymol. 1076, 173 (1991). doi: 10.1016/0167-4838(91)90262-X [20] K. Bobrowski, J. Holcman, J. Poznanski, M. Ciurak, and K. L. Wierzchowski, J. Phys. Chem. 96, 10036 (1992). doi: 10.1021/j100203a082 [21] A. K. Mishra, R. Chandrasekar, M. Faraggi, and M. H. Klapper, J. Am. Chem. Soc. 116, 1414 (1994). doi: 10.1021/ja00083a029 [22] K. Bobrowski, J. Poznański, J. Holcman, and K. L. Wierzchowski, J. Phys. Chem. B 103, 10316 (1999). doi: 10.1021/jp992178h [23] O. B. Morozova, R. Kaptein, and A. V. Yurkovskaya, J. Phys. Chem. B 116, 12221 (2012). doi: 10.1021/jp307956q [24] H. Li, G. Jiang, M. Jia, S. Cao, S. Zhang, J. Chen, H. Sun, J. Xu, and J. R. Knutson, Phys. Chem. Chem. Phys. 24, 18055 (2022). doi: 10.1039/D2CP02139K [25] J. Butler, E. J. Land, W. A. Prütz, and A. J. Swallow, Biochim. Biophys. Acta Prot. Struct. Mol. Enzymol. 705, 150 (1982). doi: 10.1016/0167-4838(82)90173-X [26] C. Y. Lee, FEBS Lett. 299, 119 (1992). doi: 10.1016/0014-5793(92)80228-9 [27] J. Stubbe and W. A. van Der Donk, Chem. Rev. 98, 2661 (1998). doi: 10.1021/cr980059c [28] R. Joshi and T. Mukherjee, Biophys. Chem. 103, 89 (2003). doi: 10.1016/S0301-4622(02)00234-X [29] K. Bobrowski, J. Holcman, J. Poznanski, and K. L. Wierzchowski, Biophys. Chem. 63, 153 (1997). doi: 10.1016/S0301-4622(96)02226-0 [30] K. Yamaguchi, K. Shuta, and S. Suzuki, Biochem. Biophys. Res. Commun. 336, 210 (2005). doi: 10.1016/j.bbrc.2005.08.076 [31] J. M. Bollinger Jr, W. H. Tong, N. Ravi, B. H. Huynh, D. E. Edmondson, and J. Stubbe, J. Am. Chem. Soc. 116, 8024 (1994). doi: 10.1021/ja00097a009 [32] M. H. V. Huynh and T. J. Meyer, Chem. Rev. 107, 5004 (2007). doi: 10.1021/cr0500030 [33] D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, and T. J. Meyer, Chem. Rev. 112, 4016 (2012). doi: 10.1021/cr200177j [34] B. Koronkiewicz, J. Swierk, K. Regan, and J. M. Mayer, J. Am. Chem. Soc. 142, 12106 (2020). doi: 10.1021/jacs.0c01429 [35] P. Li, A. V. Soudackov, B. Koronkiewicz, J. M. Mayer, and S. Hammes-Schiffer, J. Am. Chem. Soc. 142, 13795 (2020). doi: 10.1021/jacs.0c04716 [36] C. V. Pagba, T. G. McCaslin, G. Veglia, F. Porcelli, J. Yohannan, Z. Guo, M. McDaniel, and B. A. Barry, Nat. Commun. 6, 10010 (2015). doi: 10.1038/ncomms10010 [37] T. G. McCaslin, C. V. Pagba, S. H. Chi, H. J. Hwang, J. C. Gumbart, J. W. Perry, C. Olivieri, F. Porcelli, G. Veglia, and Z. Guo, J. Phys. Chem. B 123, 2780 (2019). doi: 10.1021/acs.jpcb.8b12452 [38] T. G. McCaslin, C. V. Pagba, H. Hwang, J. C. Gumbart, S. H. Chi, J. W. Perry, and B. A. Barry, Chem. Commun. 55, 9399 (2019). doi: 10.1039/C9CC04067F [39] P. Nordlund, B. M. Sjöberg, and H. Eklund, Nature 345, 593 (1990). doi: 10.1038/345593a0 [40] H. B. Gray and J. R. Winkler, Proc. Natl. Acad. Sci. USA 112, 10920 (2015). doi: 10.1073/pnas.1512704112 [41] J. R. Winkler and H. B. Gray, Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 373, 20140178 (2015). doi: 10.1098/rsta.2014.0178 [42] E. C. Minnihan, D. G. Nocera, and J. Stubbe, Acc. Chem. Res. 46, 2524 (2013). doi: 10.1021/ar4000407 [43] X. Chen, L. Zhang, L. Zhang, J. Wang, H. Liu, and Y. Bu, J. Phys. Chem. B 113, 16681 (2009). doi: 10.1021/jp9077689 [44] M. Jia, H. Yi, M. Chang, X. Cao, L. Li, Z. Zhou, H. Pan, Y. Chen, S. Zhang, and J. Xu, J. Photochem. Photobiol.: Biology 149, 243 (2015). doi: 10.1016/j.jphotobiol.2015.06.014 [45] Y. Y. Liu, H. F. Pan, J. H. Xu, and J. Q. Chen, Chin. J. Chem. Phys. 34, 621 (2021). doi: 10.1063/1674-0068/cjcp2012220 [46] J. Léonard, D. Sharma, B. Szafarowicz, K. Torgasin, and S. Haacke, Phys. Chem. Chem. Phys. 12, 15744 (2010). doi: 10.1039/c0cp00615g [47] H. DeVoe and I. Tinoco Jr., J. Mol. Biol. 4, 518 (1962). doi: 10.1016/S0022-2836(62)80106-5 [48] A. M. a. Blanco-Rodríguez, M. Towrie, J. Sykora, S. Záliš, and A. Vlcek Jr., Inorg. Chem. 50, 6122 (2011). doi: 10.1021/ic200252z [49] C. V. Pagba, S. H. Chi, J. Perry, and B. A. Barry, J. Phys. Chem. B 119, 2726 (2015). doi: 10.1021/jp510171z [50] J. M. Antosiewicz and D. Shugar, Biophys. Rev. 8, 151 (2016). doi: 10.1007/s12551-016-0198-6 [51] E. Pieri, V. Ledentu, M. Huix-Rotllant, and N. Ferré, Phys. Chem. Chem. Phys. 20, 23252 (2018). doi: 10.1039/C8CP03557A [52] W. B. De Lauder, and P. Wahl, Biochemistry 9, 2750 (1970). doi: 10.1021/bi00815a025 [53] D. M. Jameson and G. Weber, J. Phys. Chem. 85, 953 (1981). doi: 10.1021/j150608a007 [54] L. Li, H. Yi, M. Chang, X. Cao, Z. Zhou, C. Qin, S. Zhang, H. Pan, Y. Chen, and J. Xu, Sci. Bull. 60, 2129 (2015). doi: 10.1007/s11434-015-0942-5 [55] L. Li, X. Cao, Z. Zhou, S. Zhang, H. Pan, J. Chen, and J. Xu, J. Appl. Spectrosc. 84, 633 (2017). doi: 10.1007/s10812-017-0521-4 [56] F. G. Prendergast, P. D. Hampton, and B. Jones, Biochemistry 23, 6690 (1984). doi: 10.1021/bi00321a063 [57] S. Pundak and R. S. Roche, Biochemistry 23, 1549 (1984). doi: 10.1021/bi00302a032 [58] K. J. Willis, A. G. Szabot, and D. T. Krajcarski, Photochem. Photobiol. 51, 375 (1990). doi: 10.1111/j.1751-1097.1990.tb01725.x [59] K. Willis and A. Szabo, J. Phys. Chem. 95, 1585 (1991). doi: 10.1021/j100157a015 [60] J. Alexander Ross, W. R. Laws, K. W. Rousslang, and H. R. Wyssbrod, Topics in Fluorescence Spectroscopy, Springer, 1 (2002). [61] Y. P. Tsentalovich, O. A. Snytnikova, and R. Z. Sagdeev, J. Photochem. Photobiol. A Chem. 162, 371 (2004). doi: 10.1016/S1010-6030(03)00376-9 [62] D. Bent and E. Hayon, J. Am. Chem. Soc. 97, 2612 (1975). doi: 10.1021/ja00843a004 [63] K. L. Stevenson, G. A. Papadantonakis, and P. R. LeBreton, J. Photochem. Photobiol. A Chem. 133, 159 (2000). doi: 10.1016/S1010-6030(00)00235-5 [64] J. Baugher and L. Grossweiner, J. Phys. Chem. 81, 1349 (1977). doi: 10.1021/j100529a002 [65] S. Y. Reece, J. Stubbe, and D. G. Nocera, Biochim. Biophys. Acta Bioenerg. 1706, 232 (2005). doi: 10.1016/j.bbabio.2004.11.011 -