-
Abstract: The pressure-induced structural phase transition of XeO3 is studied by first principle calculations. The transition from P212121 to Pnma accompanied by a drastic reduction of volume is found at 2.18 GPa. The symmetrilized Xe–O2 bonds give rise to the better symmetry of high pressure phase. O-hopping between different possible local minima and the motion of Xe along the y axis may be responsible for phase transition. Results of electron localization function indicate that three ipsilateral Xe–O bonds lead to a lone-pair contour of Xe6+.
-
Key words:
- First principle calculation /
- Phase transition /
- High pressure /
- O-hopping
-
Figure 1. The structures of XeO3 crystal viewed along the x and z axes, respectively. (a, b) for low pressure phase P212121; (c, d) for high pressure phase Pnma. (e) The local O environment of Xe atom in two phases and schematic structural transition process assisted by O-hopping between different XeO3 polyhedra, dot circles present the other O2 sites in Pnma structure. The O1, O2, O3 and Xe atoms are marked in white, red, green, big cyan balls, respectively.
Table I. Space group and atomic coordinates of low and high pressure phases for XeO3.
Atom P212121 Pnma Site x y z Site x y z Xe 4a 0.49822 0.80056 0.73773 4c 0.50878 0.75000 0.98841 O1 4a 0.63389 0.29975 1.04537 4c 0.16884 0.43832 0.63618 O2 4a 0.73422 0.31991 0.56140 8d 0.56840 0.25000 0.34852 O3 4a 0.37337 0.49995 0.75015 Table II. The equilibrium structural parameters of P212121 and Pnma structures at 0 GPa.
Space group a/Å b/Å c/Å Bond length/Å Bond angle/(°) Xe–O1 Xe–O2 Xe–O3 O1–Xe–O2 O1–Xe–O3 O2–Xe–O3 O2–Xe–O2 P212121 Expt. 6.163 8.115 5.234 1.74 1.77 1.76 108.1 100.0 101.2 Calc. 6.185 8.625 6.040 1.899 1.893 1.900 104.57 102.64 102.35 Pnma Calc. 6.766 7.360 5.868 1.877 1.918 105.32 92.95 -
[1] T. M. Beale, M. G. Chudzinski, M. G. Sarwar and M. S. Taylor, Chem. Soc. Rev. 42, 1667 (2013). doi: 10.1039/C2CS35213C [2] G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, New York: Reinhold Publishing Corp., (1960). [3] M. L. Huggins, Angew. Chem. Int. Edit. 10, 147 (1971). doi: 10.1002/anie.197101471 [4] M. Goswami and E. Arunan, Phys. Chem. Chem. Phys. 11, 8974 (2009). doi: 10.1039/b907708a [5] N. Ramasubbu, R. Parthasarathy, and P. Murray-Rust, J. Am. Chem. Soc. 108, 4308 (1986). doi: 10.1021/ja00275a012 [6] A. C. Legon, Phys. Chem. Chem. Phys. 12, 7736 (2010). doi: 10.1039/c002129f [7] G. Gavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, and G Terraneo, Chem. Rev. 116, 2478 (2016). doi: 10.1021/acs.chemrev.5b00484 [8] M Iwaoka, S. Takemoto, and S. Tomoda, J. Am. Chem. Soc. 24, 10613 (2002). [9] W. Wang, B. Ji, and Y. Zhang, J. Phys. Chem. A 113, 8132 (2009). doi: 10.1021/jp904128b [10] S. Scheiner, Acc. Chem. Res. 46, 280 (2013). doi: 10.1021/ar3001316 [11] S. Zahn, R. Frank, E. Hey-Hawkin, and B. Kirchner, Chem. Eur. J. 17, 6034 (2001). doi: 10.1002/chem.201002146 [12] A. Bauzά and A. Frontera, Angew. Chem. Int. Ed. 54, 7340 (2015). doi: 10.1002/anie.201502571 [13] J. J. Miao, B. Song, and Y. Gao, Chem. Asian J. 10, 2615 (2015). doi: 10.1002/asia.201500785 [14] J. T. Goettel and G. J. Schrobilgen, Inorg. Chem. 55, 12975 (2016). doi: 10.1021/acs.inorgchem.6b02371 [15] J. T. Goettel, K. Matsumoto, H. P. A. Mercier, and G. J. Schrobilgen, Angew. Chem. Int. Ed. 55, 13780 (2016). doi: 10.1002/anie.201607583 [16] C. J. Hou, X. L. Wang, J. Botana, and M. S. Miao, Phys. Chem. Chem. Phys. 19, 27463 (2017). doi: 10.1039/C7CP05385A [17] M. Gao, J. Cheng, W. Li, B. Xiao, and Q. Li, Chem. Phys. Lett 60, (2016). doi: 10.1016/j.cplett.2016.03.021 [18] M. S. Miao, V. E. Van Doren, R. Keuleers, H. O. Desseyn, C. Van Alsenoy, and J. L. Martins, Chem. Phys. Lett. 316, 297 (2000). doi: 10.1016/S0009-2614(99)01312-3 [19] K. Aoki, H. Yamawaki, M. Sakashita, and H. Fujihisa, Phys. Rev. B 54, 15673 (1996). doi: 10.1103/PhysRevB.54.15673 [20] M. Bernasconi, P. L. Silvestrelli, and M. Parrinello, Phys. Rev. Lett. 81, 1235 (1998). doi: 10.1103/PhysRevLett.81.1235 [21] D. F. Duan, F. B. Tian, Z. He, X. Meng, L. C. Wang, C. B. Chen, X. S. Zhao, B. B. Liu, and T. Cui, J. Chem. Phys. 133, 074509 (2010). doi: 10.1063/1.3471446 [22] M. Benoit, A. H. Romero, and D. Marx, Phys. Rev. Lett. 89, 145501 (2002). doi: 10.1103/PhysRevLett.89.145501 [23] T. Ikeda, M. Sprik, K. Terakura,and M. Perrinello, Phys. Rev. Lett. 81, 4416 (2002). doi: 10.1103/PhysRevLett.81.4416 [24] G. F. Reiter, J. Mayers, and P. Platzman, Phys. Rev. Lett. 89, 135505 (2002). doi: 10.1103/PhysRevLett.89.135505 [25] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169 [26] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi: 10.1103/PhysRevB.50.17953 [27] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). [28] J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865 [29] H. J. Monkhorst and J. D. Pack , Phys. Rev. B 13, 5188 (1976). doi: 10.1103/PhysRevB.13.5188 [30] J. L. Huston, M. R. Studier, and E. N. Sloth, Science 143, 1161 (1964). doi: 10.1126/science.143.3611.1161.a [31] J. E. Jaffe and A. C. Hess, Phys. Rev. B 48, 7903 (1993). doi: 10.1103/PhysRevB.48.7903 [32] Q. Zhu, D. Y. Jun, A. R. Oganov, C. W. Glass, C. Gatti, and A. O. Lyakhovv, Nat. Chem. 5, 61 (2013). doi: 10.1038/nchem.1497 -