-
Abstract: Single-molecule spin logic gates provide fundamental functions and are of importance in the field of molecular spintronics. Here, by using the first-principles method, the effects of ambient gas molecules (CO2, O2, N2, or H2O) on the functional stability of the investigated single-molecule spin logic gate consisting of two serially connected cobalt dibenzotetraaza[14]annulene (CoDBTAA) molecules between single-walled carbon nanotubes (SWCNTs) electrodes, have been theoretically investigated. The calculated results suggest that the investigated spin logic gate can realize AND, NOR, or XNOR logic functions depending on the definition of the input and output signals. It is found that these logic functions are not affected by CO2 adsorption. On the contrary, these logic functions are no longer retained upon O2, N2, or H2O adsorption. Further analysis reveals that the interaction between the CoDBTAA molecule and the CO2 adsorbate is very weak while it is strong for O2, N2, or H2O molecules. Therefore, the electronic states of the logic gate around Fermi energy (EF) are almost unchanged for CO2 adsorption. While the adsorption of O2, N2, or H2O obviously modifies the electronic states around EF. The strong interaction between CoDBTAA and these three gas adsorbates drives the conductive electronic states to move far away from EF, resulting in the blocking of both spin-up and spin-down currents and further voiding the logic functions. This work suggests that ambient air has an important effect on the functional stability of single-molecule devices and should be carefully evaluated in the future design of functional single-molecule devices.
-
Figure 1. Schematic of the investigated single-molecule spin logic gate consisting of two serially connected CoDBTAA molecules between two (4, 4) SWCNT electrodes in ambient air (here considering
$ \rm{CO}_2 $ ,$ \rm{O}_2 $ ,$ \rm{N}_2 $ , and$ \rm{H_2O} $ ). The left and right electrodes are shadowed in red and blue, respectively. P (AP) represents the parallel (antiparallel) spin polarization for two Co atoms.Figure 4. Spin-resolved PDOS for (a) CoDBTAA-
$ \rm{CO}_2 $ -P and (b) CoDBTAA-$ \rm{CO}_2 $ -AP projected onto the left/right CoDBTAA molecules (denoted as L-/R-CoDBTAA), the left/right$ \rm{CO}_2 $ molecules (denoted as L-/R-$ \rm{CO}_2 $ ), and the middle CAC (denoted as middle-CAC) between two CoDBTAA molecules. The triangles in the first panel are MPSH eigenvalues.Figure 6. Spin-resolved PDOS for (a) CoDBTAA-
$ \rm{O}_2 $ -P and (b) CoDBTAA-$ \rm{O}_2 $ -AP projected onto the left/right CoDBTAA molecules (denoted as L-/R-CoDBTAA), the left/right$ \rm{O}_2 $ molecules (denoted as L-/R-$ \rm{O}_2 $ ), and the middle CAC (denoted as middle-CAC) between two CoDBTAA molecules. The triangles in the first panel are MPSH eigenvalues.Table I. Adsorption energy (
$ E_{\rm{ads}} $ ), average distance ($ d $ ) between central Co atom and gas molecule and average charge variation ($ \Delta Q $ ) of gas molecules adsorbing on the single-molecule spin logic gate. A positive (negative) value of$ \Delta Q $ represents gaining (losing) electrons.Adsorbate $ E_{\rm{ads}} $/eV $ d $/Å $\Delta Q/{\rm{e} }$ $ \uparrow $ $ \downarrow $ $ \rm{CO}_2 $ −0.03 3.59 0.00 0.00 $ \rm{O}_2 $ −1.84 1.96 $ -0.32 $ $ 0.45 $ $ \rm{N}_2 $ −0.39 2.07 $ -0.04 $ $ -0.05 $ $ \rm{H_2O} $ −0.28 2.52 $ -0.02 $ $ -0.06 $ Table II. Truth table for the investigated single-molecule junction, when the spin-up (spin-down) polarization of two Co atoms is defined as logic input 1 (0), and high (low) spin-up current is defined as logic output 1 (0). “T” and “F” mean the junction can and can not act as a NOR logic gate, respectively.
Adsorbate Output NOR (1,1) (1,0) (0,1) (0,0) Pristine 0 0 0 1 T $ \rm{CO}_2 $ 0 0 0 1 T $ \rm{O}_2 $ 0 0 0 0 F $ \rm{N}_2 $ 0 0 0 0 F $ \rm{H_2O} $ 0 0 0 0 F Table III. Truth table for the investigated single-molecule junction, when the spin-up (spin-down) polarization of two Co atoms is defined as logic input 1 (0), and high (low) spin-down current is defined as logic output 1 (0). “T” and “F” mean the junction can and can not act as an AND logic gate, respectively.
Adsorbate Output AND (1,1) (1,0) (0,1) (0,0) Pristine 1 0 0 0 T $ \rm{CO}_2 $ 1 0 0 0 T $ \rm{O}_2 $ 0 0 0 0 F $ \rm{N}_2 $ 0 0 0 0 F $ \rm{H_2O} $ 0 0 0 0 F Table IV. Truth table for the investigated single-molecule junction, when the spin-up (spin-down) polarization of two Co atoms is defined as logic input 1 (0), and high (low) total current is defined as logic output 1 (0). “T” and “F” mean the junction can and can not act as a XNOR logic gate, respectively.
Adsorbate Output XNOR (1,1) (1,0) (0,1) (0,0) Pristine 1 0 0 1 T $ \rm{CO}_2 $ 1 0 0 1 T $ \rm{O}_2 $ 0 0 0 0 F $ \rm{N}_2 $ 0 0 0 0 F $ \rm{H_2O} $ 0 0 0 0 F -
[1] A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974). doi: 10.1016/0009-2614(74)85031-1 [2] D. Xiang, X. Wang, C. Jia, T. Lee, and X. Guo, Chem. Rev. 116, 4318 (2016). doi: 10.1021/acs.chemrev.5b00680 [3] A. Vilan, D. Aswal, and D. Cahen, Chem. Rev. 117, 4248 (2017). doi: 10.1021/acs.chemrev.6b00595 [4] T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, and C. Nuckolls, Nat. Rev. Mater. 1, 16002 (2016). doi: 10.1038/natrevmats.2016.2 [5] L. Sun, Y. A. Diaz-Fernandez, T. A. Gschneidtner, F. Westerlund, S. Lara-Avila, and K. Moth-Poulsen, Chem. Soc. Rev. 43, 7378 (2014). doi: 10.1039/C4CS00143E [6] C. K. Wang, Y. Fu, and Y. Luo, Phys. Chem. Chem. Phys. 3, 5017 (2001). doi: 10.1039/b105279a [7] M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002). doi: 10.1103/PhysRevB.65.165401 [8] R. Liu, C. K. Wang, and Z. L. Li, Sci. Rep. 6, 21946 (2016). doi: 10.1038/srep21946 [9] M. A. Reed, C. Zhou, C. Muller, T. Burgin, and J. Tour, Science 278, 252 (1997). doi: 10.1126/science.278.5336.252 [10] B. Xu and N. J. Tao, Science 301, 1221 (2003). doi: 10.1126/science.1087481 [11] M. Z. Wei, Z. Q. Wang, X. X. Fu, G. C. Hu, Z. L. Li, C. K. Wang, and G. P. Zhang, Phys. E 103, 397 (2018). doi: 10.1016/j.physe.2018.05.041 [12] R. Liu, J. J. Bi, Z. Xie, K. Yin, D. Wang, G. P. Zhang, D. Xiang, C. K. Wang, and Z. L. Li, Phys. Rev. Appl. 9, 054023 (2018). doi: 10.1103/PhysRevApplied.9.054023 [13] B. Capozzi, J. Xia, O. Adak, E. J. Dell, Z. F. Liu, J. C. Taylor, J. B. Neaton, L. M. Campos, and L. Venkataraman, Nat. Nanotech. 10, 522 (2015). doi: 10.1038/nnano.2015.97 [14] C. Van Dyck and M. A. Ratner, Nano Lett. 15, 1577 (2015). doi: 10.1021/nl504091v [15] Z. Q. Wang, M. Z. Wei, M. M. Dong, G. C. Hu, Z. L. Li, C. K. Wang, and G. P. Zhang, J. Phys. Chem. C 122, 17650 (2018). doi: 10.1021/acs.jpcc.8b03761 [16] C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng, Z. Liu, Z. Guangyu, D. H. Qu, H. Tian, M. A. Ratner, H. Q. Xu, A. Nitzan, and X. Guo, Science 352, 1443 (2016). doi: 10.1126/science.aaf6298 [17] D. Weckbecker, P. Coto, and M. Thoss, Nano Lett. 17, 3341 (2017). doi: 10.1021/acs.nanolett.6b04813 [18] G. Tian, D. Sun, Y. Zhang, and X. Yu, Angew. Chem. Int. Ed. 58, 5951 (2019). doi: 10.1002/anie.201900731 [19] L. Ma, G. Tian, and J. T. Lü, Phys. Rev. B 106, 165416 (2022). doi: 10.1103/PhysRevB.106.165416 [20] H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Nature 462, 1039 (2009). doi: 10.1038/nature08639 [21] D. Sun, L. Li, X. Yu, and G. Tian, Phys. Rev. B 99, 125423 (2019). doi: 10.1103/PhysRevB.99.125423 [22] C. Nacci, F. Ample, D. Bleger, S. Hecht, C. Joachim, and L. Grill, Nat. Commun. 6, 7397 (2015). doi: 10.1038/ncomms8397 [23] C. E. Smith, S. O. Odoh, S. Ghosh, L. Gagliardi, C. J. Cramer, and C. D. Frisbie, J. Am. Chem. Soc. 137, 15732 (2015). doi: 10.1021/jacs.5b07400 [24] G. Kuang, S. Z. Chen, W. Wang, T. Lin, K. Chen, X. Shang, P. N. Liu, and N. Lin, J. Am. Chem. Soc. 138, 11140 (2016). doi: 10.1021/jacs.6b07416 [25] V. Dediu, M. Murgia, F. Matacotta, C. Taliani, and S. Barbanera, Solid State Commun. 122, 181 (2002). doi: 10.1016/S0038-1098(02)00090-X [26] A. R. Rocha, V. M. García-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nat. Mater. 4, 335 (2005). doi: 10.1038/nmat1349 [27] S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011). doi: 10.1039/c1cs15047b [28] M. Sun and W. Mi, J. Mater. Chem. C 6, 6619 (2018). doi: 10.1039/C8TC01399C [29] M. Urdampilleta, S. Klayatskaya, M. Ruben, and W. Wernsdorfer, ACS Nano 9, 4458 (2015). doi: 10.1021/acsnano.5b01056 [30] A. Bedoya-Pinto, S. G. Miralles, S. Vélez, A. Atxabal, P. Gargiani, M. Valvidares, F. Casanova, E. Coronado, and L. E. Hueso, Adv. Funct. Mater. 28, 1702099 (2018). doi: 10.1002/adfm.201702099 [31] G. P. Zhang, Y. Q. Mu, M. Z. Wei, S. Wang, H. Huang, G. C. Hu, Z. L. Li, and C. K. Wang, J. Mater. Chem. C 6, 2105 (2018). doi: 10.1039/C7TC05518H [32] X. K. Hong, Y. W. Kuang, C. Qian, Y. M. Tao, H. L. Yu, D. B. Zhang, Y. S. Liu, J. F. Feng, X. F. Yang, and X. F. Wang, J. Phys. Chem. C 120, 668 (2016). [33] Y. J. Li, L. Y. Chen, Y. H. Xia, J. M. Zhao, Y. Q. Mu, G. P. Zhang, and Y. Song, Physica E 134, 114896 (2021). doi: 10.1016/j.physe.2021.114896 [34] Y. Song, C. K. Wang, G. Chen, and G. P. Zhang, Phys. Chem. Chem. Phys. 23, 18760 (2021). doi: 10.1039/D1CP01126J [35] S. Koley and S. Chakrabarti, J. Phys. Chem. C 121, 21695 (2017). doi: 10.1021/acs.jpcc.7b06513 [36] M. Zeng, L. Shen, H. Su, C. Zhang, and Y. Feng, Appl. Phys. Lett. 98, 092110 (2011). doi: 10.1063/1.3562320 [37] W. Zhao, D. Zou, C. L. Yang, and Z. Sun, J. Mater. Chem. C 5, 8862 (2017). doi: 10.1039/C7TC02312J [38] J. Zeng and K. Q. Chen, Phys. Chem. Chem. Phys. 20, 3997 (2018). doi: 10.1039/C7CP07795E [39] H. Khaledi, M. M. Olmstead, H. Mohd Ali, and N. F. Thomas, Inorg. Chem. 52, 1926 (2013). doi: 10.1021/ic302150j [40] Q. Wu, P. Zhao, Y. Su, S. Li, J. Guo, and G. Chen, RSC Adv. 5, 52938 (2015). doi: 10.1039/C5RA07456H [41] Z. Q. Wang, F. Tang, M. M. Dong, M. L. Wang, G. C. Hu, J. C. Leng, C. K. Wang, and G. P. Zhang, Chin. Phys. B 29, 067202 (2020). doi: 10.1088/1674-1056/ab84cf [42] H. Kondo, J. Nara, and T. Ohno, J. Phys. Chem. C 115, 6886 (2011). doi: 10.1021/jp1087064 [43] J. Zeng, K. Q. Chen, and M. Long, Org. Electron. 58, 216 (2018). doi: 10.1016/j.orgel.2018.04.024 [44] D. Zou, W. Zhao, B. Cui, D. Li, and D. Liu, Phys. Chem. Chem. Phys. 20, 2048 (2018). doi: 10.1039/C7CP06760G [45] T. Omiya, P. Poli, H. Arnolds, R. Raval, M. Persson, and Y. Kim, Chem. Commun. 53, 6148 (2017). doi: 10.1039/C7CC01310H [46] W. Zhao, D. Zou, Z. Sun, Y. Yu, and C. Yang, Phys. Lett. A 382, 2666 (2018). doi: 10.1016/j.physleta.2018.06.028 [47] F. Li, J. Huang, J. Wang, and Q. Li, Molecules 24, 1747 (2019). doi: 10.3390/molecules24091747 [48] QuantumATK version O-2018.06, Synopsys QuantumATK (https://www.synopsys.com/silicon/quantumatk.html). [49] S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, M. E. Lee, S. T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M. L. N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, J. Phys.: Condens. Mat. 32, 015901 (2020). doi: 10.1088/1361-648X/ab4007 [50] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002). doi: 10.1088/0953-8984/14/11/302 [51] Y. Sun, K. Chen, L. Jia, and H. Li, Phys. Chem. Chem. Phys. 13, 13800 (2011). doi: 10.1039/c0cp02715d [52] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985). doi: 10.1103/PhysRevB.31.6207 -
Supporting-Information.pdf
-