• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Effects of Ambient Air on Functional Stability of Single-Molecule Spin Logic Gate

  • Abstract: Single-molecule spin logic gates provide fundamental functions and are of importance in the field of molecular spintronics. Here, by using the first-principles method, the effects of ambient gas molecules (CO2, O2, N2, or H2O) on the functional stability of the investigated single-molecule spin logic gate consisting of two serially connected cobalt dibenzotetraaza14annulene (CoDBTAA) molecules between single-walled carbon nanotubes (SWCNTs) electrodes, have been theoretically investigated. The calculated results suggest that the investigated spin logic gate can realize AND, NOR, or XNOR logic functions depending on the definition of the input and output signals. It is found that these logic functions are not affected by CO2 adsorption. On the contrary, these logic functions are no longer retained upon O2, N2, or H2O adsorption. Further analysis reveals that the interaction between the CoDBTAA molecule and the CO2 adsorbate is very weak while it is strong for O2, N2, or H2O molecules. Therefore, the electronic states of the logic gate around Fermi energy (EF) are almost unchanged for CO2 adsorption. While the adsorption of O2, N2, or H2O obviously modifies the electronic states around EF. The strong interaction between CoDBTAA and these three gas adsorbates drives the conductive electronic states to move far away from EF, resulting in the blocking of both spin-up and spin-down currents and further voiding the logic functions. This work suggests that ambient air has an important effect on the functional stability of single-molecule devices and should be carefully evaluated in the future design of functional single-molecule devices.

     

/

返回文章
返回