Effects of Ambient Air on Functional Stability of Single-Molecule Spin Logic Gate

Guang-Ping Zhang Yun-Zhe Sun Ni-Ping Shi Chao-Jie Yu Ya-Qi Kong Hui Huang Zi-Qun Wang

Guang-Ping Zhang, Yun-Zhe Sun, Ni-Ping Shi, Chao-Jie Yu, Ya-Qi Kong, Hui Huang, Zi-Qun Wang. Effects of Ambient Air on Functional Stability of Single-Molecule Spin Logic Gate[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2212176
Citation: Guang-Ping Zhang, Yun-Zhe Sun, Ni-Ping Shi, Chao-Jie Yu, Ya-Qi Kong, Hui Huang, Zi-Qun Wang. Effects of Ambient Air on Functional Stability of Single-Molecule Spin Logic Gate[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2212176

doi: 10.1063/1674-0068/cjcp2212176

Effects of Ambient Air on Functional Stability of Single-Molecule Spin Logic Gate

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Schematic of the investigated single-molecule spin logic gate consisting of two serially connected CoDBTAA molecules between two (4, 4) SWCNT electrodes in ambient air (here considering $ \rm{CO}_2 $, $ \rm{O}_2 $, $ \rm{N}_2 $, and $ \rm{H_2O} $). The left and right electrodes are shadowed in red and blue, respectively. P (AP) represents the parallel (antiparallel) spin polarization for two Co atoms.

    Figure  2.  Spin-resolved I-V curves for (a) CoDBTAA-$ \rm{CO}_2 $-P/AP, (b) CODBTAA-$ \rm{O}_2 $-P/AP, (c) CoDBTAA-$ \rm{N}_2 $-P/AP, and (d) CoDBTAA-$ \rm{H_2O} $-P/AP.

    Figure  3.  Spin-dependent transmission spectra at zero bias voltage for (a) CoDBTAA-$ \rm{CO}_2 $-P/AP, (b) CoDBTAA-$ \rm{O}_2 $-P/AP. The insets are spin-resolved transmission spectra at 0.4 V with the vertical dashed lines indicating the bias window.

    Figure  4.  Spin-resolved PDOS for (a) CoDBTAA-$ \rm{CO}_2 $-P and (b) CoDBTAA-$ \rm{CO}_2 $-AP projected onto the left/right CoDBTAA molecules (denoted as L-/R-CoDBTAA), the left/right $ \rm{CO}_2 $ molecules (denoted as L-/R-$ \rm{CO}_2 $), and the middle CAC (denoted as middle-CAC) between two CoDBTAA molecules. The triangles in the first panel are MPSH eigenvalues.

    Figure  5.  Spatial distributions of frontier MPSH orbitals for (a) CoDBTAA-$ \rm{CO}_2 $-P and (b) CoDBTAA-$\rm{CO}_2$-AP under zero bias voltage. The isovalue is 0.02 Å-3/2.

    Figure  6.  Spin-resolved PDOS for (a) CoDBTAA-$ \rm{O}_2 $-P and (b) CoDBTAA-$ \rm{O}_2 $-AP projected onto the left/right CoDBTAA molecules (denoted as L-/R-CoDBTAA), the left/right $ \rm{O}_2 $ molecules (denoted as L-/R-$ \rm{O}_2 $), and the middle CAC (denoted as middle-CAC) between two CoDBTAA molecules. The triangles in the first panel are MPSH eigenvalues.

    Figure  7.  Spatial distributions of frontier MPSH orbitals for (a) CoDBTAA-O2-P and (b) CoDBTAA-O2-AP under zero bias voltage. The isovalue is 0.02 Å-3/2.

    Table  I.   Adsorption energy ($ E_{\rm{ads}} $), average distance ($ d $) between central Co atom and gas molecule and average charge variation ($ \Delta Q $) of gas molecules adsorbing on the single-molecule spin logic gate. A positive (negative) value of $ \Delta Q $ represents gaining (losing) electrons.

    Adsorbate $ E_{\rm{ads}} $/eV $ d $/Å $\Delta Q/{\rm{e} }$
    $ \uparrow $ $ \downarrow $
    $ \rm{CO}_2 $ −0.03 3.59 0.00 0.00
    $ \rm{O}_2 $ −1.84 1.96 $ -0.32 $ $ 0.45 $
    $ \rm{N}_2 $ −0.39 2.07 $ -0.04 $ $ -0.05 $
    $ \rm{H_2O} $ −0.28 2.52 $ -0.02 $ $ -0.06 $
    下载: 导出CSV

    Table  II.   Truth table for the investigated single-molecule junction, when the spin-up (spin-down) polarization of two Co atoms is defined as logic input 1 (0), and high (low) spin-up current is defined as logic output 1 (0). “T” and “F” mean the junction can and can not act as a NOR logic gate, respectively.

    Adsorbate Output NOR
    (1,1) (1,0) (0,1) (0,0)
    Pristine 0 0 0 1 T
    $ \rm{CO}_2 $ 0 0 0 1 T
    $ \rm{O}_2 $ 0 0 0 0 F
    $ \rm{N}_2 $ 0 0 0 0 F
    $ \rm{H_2O} $ 0 0 0 0 F
    下载: 导出CSV

    Table  III.   Truth table for the investigated single-molecule junction, when the spin-up (spin-down) polarization of two Co atoms is defined as logic input 1 (0), and high (low) spin-down current is defined as logic output 1 (0). “T” and “F” mean the junction can and can not act as an AND logic gate, respectively.

    Adsorbate Output AND
    (1,1) (1,0) (0,1) (0,0)
    Pristine 1 0 0 0 T
    $ \rm{CO}_2 $ 1 0 0 0 T
    $ \rm{O}_2 $ 0 0 0 0 F
    $ \rm{N}_2 $ 0 0 0 0 F
    $ \rm{H_2O} $ 0 0 0 0 F
    下载: 导出CSV

    Table  IV.   Truth table for the investigated single-molecule junction, when the spin-up (spin-down) polarization of two Co atoms is defined as logic input 1 (0), and high (low) total current is defined as logic output 1 (0). “T” and “F” mean the junction can and can not act as a XNOR logic gate, respectively.

    Adsorbate Output XNOR
    (1,1) (1,0) (0,1) (0,0)
    Pristine 1 0 0 1 T
    $ \rm{CO}_2 $ 1 0 0 1 T
    $ \rm{O}_2 $ 0 0 0 0 F
    $ \rm{N}_2 $ 0 0 0 0 F
    $ \rm{H_2O} $ 0 0 0 0 F
    下载: 导出CSV
  • [1] A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974). doi: 10.1016/0009-2614(74)85031-1
    [2] D. Xiang, X. Wang, C. Jia, T. Lee, and X. Guo, Chem. Rev. 116, 4318 (2016). doi: 10.1021/acs.chemrev.5b00680
    [3] A. Vilan, D. Aswal, and D. Cahen, Chem. Rev. 117, 4248 (2017). doi: 10.1021/acs.chemrev.6b00595
    [4] T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, and C. Nuckolls, Nat. Rev. Mater. 1, 16002 (2016). doi: 10.1038/natrevmats.2016.2
    [5] L. Sun, Y. A. Diaz-Fernandez, T. A. Gschneidtner, F. Westerlund, S. Lara-Avila, and K. Moth-Poulsen, Chem. Soc. Rev. 43, 7378 (2014). doi: 10.1039/C4CS00143E
    [6] C. K. Wang, Y. Fu, and Y. Luo, Phys. Chem. Chem. Phys. 3, 5017 (2001). doi: 10.1039/b105279a
    [7] M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002). doi: 10.1103/PhysRevB.65.165401
    [8] R. Liu, C. K. Wang, and Z. L. Li, Sci. Rep. 6, 21946 (2016). doi: 10.1038/srep21946
    [9] M. A. Reed, C. Zhou, C. Muller, T. Burgin, and J. Tour, Science 278, 252 (1997). doi: 10.1126/science.278.5336.252
    [10] B. Xu and N. J. Tao, Science 301, 1221 (2003). doi: 10.1126/science.1087481
    [11] M. Z. Wei, Z. Q. Wang, X. X. Fu, G. C. Hu, Z. L. Li, C. K. Wang, and G. P. Zhang, Phys. E 103, 397 (2018). doi: 10.1016/j.physe.2018.05.041
    [12] R. Liu, J. J. Bi, Z. Xie, K. Yin, D. Wang, G. P. Zhang, D. Xiang, C. K. Wang, and Z. L. Li, Phys. Rev. Appl. 9, 054023 (2018). doi: 10.1103/PhysRevApplied.9.054023
    [13] B. Capozzi, J. Xia, O. Adak, E. J. Dell, Z. F. Liu, J. C. Taylor, J. B. Neaton, L. M. Campos, and L. Venkataraman, Nat. Nanotech. 10, 522 (2015). doi: 10.1038/nnano.2015.97
    [14] C. Van Dyck and M. A. Ratner, Nano Lett. 15, 1577 (2015). doi: 10.1021/nl504091v
    [15] Z. Q. Wang, M. Z. Wei, M. M. Dong, G. C. Hu, Z. L. Li, C. K. Wang, and G. P. Zhang, J. Phys. Chem. C 122, 17650 (2018). doi: 10.1021/acs.jpcc.8b03761
    [16] C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng, Z. Liu, Z. Guangyu, D. H. Qu, H. Tian, M. A. Ratner, H. Q. Xu, A. Nitzan, and X. Guo, Science 352, 1443 (2016). doi: 10.1126/science.aaf6298
    [17] D. Weckbecker, P. Coto, and M. Thoss, Nano Lett. 17, 3341 (2017). doi: 10.1021/acs.nanolett.6b04813
    [18] G. Tian, D. Sun, Y. Zhang, and X. Yu, Angew. Chem. Int. Ed. 58, 5951 (2019). doi: 10.1002/anie.201900731
    [19] L. Ma, G. Tian, and J. T. Lü, Phys. Rev. B 106, 165416 (2022). doi: 10.1103/PhysRevB.106.165416
    [20] H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Nature 462, 1039 (2009). doi: 10.1038/nature08639
    [21] D. Sun, L. Li, X. Yu, and G. Tian, Phys. Rev. B 99, 125423 (2019). doi: 10.1103/PhysRevB.99.125423
    [22] C. Nacci, F. Ample, D. Bleger, S. Hecht, C. Joachim, and L. Grill, Nat. Commun. 6, 7397 (2015). doi: 10.1038/ncomms8397
    [23] C. E. Smith, S. O. Odoh, S. Ghosh, L. Gagliardi, C. J. Cramer, and C. D. Frisbie, J. Am. Chem. Soc. 137, 15732 (2015). doi: 10.1021/jacs.5b07400
    [24] G. Kuang, S. Z. Chen, W. Wang, T. Lin, K. Chen, X. Shang, P. N. Liu, and N. Lin, J. Am. Chem. Soc. 138, 11140 (2016). doi: 10.1021/jacs.6b07416
    [25] V. Dediu, M. Murgia, F. Matacotta, C. Taliani, and S. Barbanera, Solid State Commun. 122, 181 (2002). doi: 10.1016/S0038-1098(02)00090-X
    [26] A. R. Rocha, V. M. García-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nat. Mater. 4, 335 (2005). doi: 10.1038/nmat1349
    [27] S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011). doi: 10.1039/c1cs15047b
    [28] M. Sun and W. Mi, J. Mater. Chem. C 6, 6619 (2018). doi: 10.1039/C8TC01399C
    [29] M. Urdampilleta, S. Klayatskaya, M. Ruben, and W. Wernsdorfer, ACS Nano 9, 4458 (2015). doi: 10.1021/acsnano.5b01056
    [30] A. Bedoya-Pinto, S. G. Miralles, S. Vélez, A. Atxabal, P. Gargiani, M. Valvidares, F. Casanova, E. Coronado, and L. E. Hueso, Adv. Funct. Mater. 28, 1702099 (2018). doi: 10.1002/adfm.201702099
    [31] G. P. Zhang, Y. Q. Mu, M. Z. Wei, S. Wang, H. Huang, G. C. Hu, Z. L. Li, and C. K. Wang, J. Mater. Chem. C 6, 2105 (2018). doi: 10.1039/C7TC05518H
    [32] X. K. Hong, Y. W. Kuang, C. Qian, Y. M. Tao, H. L. Yu, D. B. Zhang, Y. S. Liu, J. F. Feng, X. F. Yang, and X. F. Wang, J. Phys. Chem. C 120, 668 (2016).
    [33] Y. J. Li, L. Y. Chen, Y. H. Xia, J. M. Zhao, Y. Q. Mu, G. P. Zhang, and Y. Song, Physica E 134, 114896 (2021). doi: 10.1016/j.physe.2021.114896
    [34] Y. Song, C. K. Wang, G. Chen, and G. P. Zhang, Phys. Chem. Chem. Phys. 23, 18760 (2021). doi: 10.1039/D1CP01126J
    [35] S. Koley and S. Chakrabarti, J. Phys. Chem. C 121, 21695 (2017). doi: 10.1021/acs.jpcc.7b06513
    [36] M. Zeng, L. Shen, H. Su, C. Zhang, and Y. Feng, Appl. Phys. Lett. 98, 092110 (2011). doi: 10.1063/1.3562320
    [37] W. Zhao, D. Zou, C. L. Yang, and Z. Sun, J. Mater. Chem. C 5, 8862 (2017). doi: 10.1039/C7TC02312J
    [38] J. Zeng and K. Q. Chen, Phys. Chem. Chem. Phys. 20, 3997 (2018). doi: 10.1039/C7CP07795E
    [39] H. Khaledi, M. M. Olmstead, H. Mohd Ali, and N. F. Thomas, Inorg. Chem. 52, 1926 (2013). doi: 10.1021/ic302150j
    [40] Q. Wu, P. Zhao, Y. Su, S. Li, J. Guo, and G. Chen, RSC Adv. 5, 52938 (2015). doi: 10.1039/C5RA07456H
    [41] Z. Q. Wang, F. Tang, M. M. Dong, M. L. Wang, G. C. Hu, J. C. Leng, C. K. Wang, and G. P. Zhang, Chin. Phys. B 29, 067202 (2020). doi: 10.1088/1674-1056/ab84cf
    [42] H. Kondo, J. Nara, and T. Ohno, J. Phys. Chem. C 115, 6886 (2011). doi: 10.1021/jp1087064
    [43] J. Zeng, K. Q. Chen, and M. Long, Org. Electron. 58, 216 (2018). doi: 10.1016/j.orgel.2018.04.024
    [44] D. Zou, W. Zhao, B. Cui, D. Li, and D. Liu, Phys. Chem. Chem. Phys. 20, 2048 (2018). doi: 10.1039/C7CP06760G
    [45] T. Omiya, P. Poli, H. Arnolds, R. Raval, M. Persson, and Y. Kim, Chem. Commun. 53, 6148 (2017). doi: 10.1039/C7CC01310H
    [46] W. Zhao, D. Zou, Z. Sun, Y. Yu, and C. Yang, Phys. Lett. A 382, 2666 (2018). doi: 10.1016/j.physleta.2018.06.028
    [47] F. Li, J. Huang, J. Wang, and Q. Li, Molecules 24, 1747 (2019). doi: 10.3390/molecules24091747
    [48] QuantumATK version O-2018.06, Synopsys QuantumATK (https://www.synopsys.com/silicon/quantumatk.html).
    [49] S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, M. E. Lee, S. T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M. L. N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, J. Phys.: Condens. Mat. 32, 015901 (2020). doi: 10.1088/1361-648X/ab4007
    [50] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002). doi: 10.1088/0953-8984/14/11/302
    [51] Y. Sun, K. Chen, L. Jia, and H. Li, Phys. Chem. Chem. Phys. 13, 13800 (2011). doi: 10.1039/c0cp02715d
    [52] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985). doi: 10.1103/PhysRevB.31.6207
  • Supporting-Information.pdf
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  484
  • HTML全文浏览量:  215
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 录用日期:  2023-01-11
  • 网络出版日期:  2023-02-04

目录

    /

    返回文章
    返回