• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

On-the-Fly Nonadiabatic Dynamics of Caffeic Acid Sunscreen Compound

  • Abstract: As a widely-used sunscreen compound, the caffeic acid (CA) shows the strong UV absorption, while the photoinduced reaction mechanisms behind its photoprotection ability are not fully understood. We try to investigate the photoinduced internal conversion dynamics of CA in order to explore the photoprotection mechanism. The most stable CA isomer is selected to examine its nonadiabatic dynamics using the on-the-fly surface hopping simulations at the semi-empirical level of electronic-structure theory. The dynamics starting from different electronic states are simulated to explore the dependence of the photoinduced reaction channels on the excitation wavelengths. Several S1/S0 conical intersections, driven by the H-atom detachments and the ring deformations, have been found to be responsible for the nonadiabatic decay of the CA. The simulation results show that the branching ratios towards these intersections are modified by the light with different excitation energies. This provides the valuable information for the understanding of the photoprotection mechanism of the CA compound.

     

/

返回文章
返回