On-the-Fly Nonadiabatic Dynamics of Caffeic Acid Sunscreen Compound

Xu Kang Yifei Zhu Juanjuan Zhang Chao Xu Zhenggang Lan

Xu Kang, Yifei Zhu, Juanjuan Zhang, Chao Xu, Zhenggang Lan. On-the-Fly Nonadiabatic Dynamics of Caffeic Acid Sunscreen Compound[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211171
Citation: Xu Kang, Yifei Zhu, Juanjuan Zhang, Chao Xu, Zhenggang Lan. On-the-Fly Nonadiabatic Dynamics of Caffeic Acid Sunscreen Compound[J]. Chinese Journal of Chemical Physics . doi: 10.1063/1674-0068/cjcp2211171

doi: 10.1063/1674-0068/cjcp2211171

On-the-Fly Nonadiabatic Dynamics of Caffeic Acid Sunscreen Compound

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • Figure  1.  Structures of caffeic acid (CA), ferulic acid (FA), sinapic acid (SA), methyl sinapate (MS), and sinapoyl malate (SM) .

    Figure  2.  The structures of (a) S0-min and (b) S1-min with differnt view.

    Figure  3.  Electronic transitions and excitation energies of the low-lying electronic states at ${\rm{S}}_0$-min at the OM2/MRCI level.

    Figure  4.  The optimized structures of ${\rm{S}}_1$/${\rm{S}}_0$ CIs structures, (a) CI-I, (b) CI-II, (c) CI-III, and (d) CI-IV), at the OM2/MRCI level.

    Figure  5.  The energy level diagram of electronic states at important geometries including ${\rm{S}}_0$-min, ${\rm{S}}_1$-min, ${\rm{S}}_3$/${\rm{S}}_2$ CI, ${\rm{S}}_2$/${\rm{S}}_1$ CI, CI-I, CI-II, CI-III, and CI-IV at the OM2/MRCI level.

    Figure  6.  Time-dependent average fractional occupations of adiabatic electronic states in the nonadiabatic dynamics: (a) initiated from ${\rm{S}}_1$, (b) initiated from ${\rm{S}}_2$, (c) initiated from ${\rm{S}}_3$.

    Figure  7.  The branching ratio of the photoreaction channels under different excitation energies: (a) four domains including < 4.1 eV, 4.1–4.5 eV, 4.5–5.0 eV, and > 5.0 eV, respectively; (b) eight energy domains including < 4.1 eV, 4.1–4.3 eV, 4.3–4.5 eV, 4.5–4.7 eV, 4.7–4.9 eV, 4.9–5.1 eV, 5.1–5.3 eV, and > 5.3 eV, respectively.

    Figure  8.  Linear interpolated potential energy surfaces between ${\rm{S}}_1$-min and ${\rm{S}}_1$/${\rm{S}}_0$ CIs at the OM2/MRCI level, the black line, the green line, the blue line, and the red line represents the ${\rm{S}}_0$, ${\rm{S}}_1$, ${\rm{S}}_2$, and ${\rm{S}}_3$, respectively.

    Table  I.   Key geometrical parameters (bond lengths in Å and angles in degree) of the S0-min, S1-min and four CIs at the OM2/MRCI level, together with the S0-min results reported in the previous work [42].

    Structure Bond length Dihedral angle
    O$ _{20} $–H O$ _{18} $–H C$ _3 $–C$ _{10} $ C$ _{10} $–C$ _{12} $ C$ _2 $–C$ _3 $–C$ _{10} $–C$ _{12} $ C$ _3 $–C$ _{10} $–C$ _{12} $–C$ _{14} $
    S0-min 0.992 0.996 1.457 1.353 180.0 180.0
    S0-min [42] 0.960 0.960 1.540 1.355 180.0 180.0
    S1-min 0.990 0.982 1.434 1.355 168.0 178.9
    CI-I 1.549 0.997 1.461 1.350 180.0 180.0
    CI-II 0.999 1.538 1.450 1.351 178.3 180.0
    CI-III 0.998 0.998 1.459 1.347 176.2 180.0
    CI-IV 0.999 0.986 1.445 1.354 172.4 179.7
    下载: 导出CSV

    Table  II.   The branching ratio of each CI channel in the nonadiabatic dynamics of CA.

    State Branching ratio
    CI-I CI-II CI-III CI-IV CI-III+CI-IV Else No hop
    ${\rm{S}}_1$ 21% 3% 5% 17% 34% 10% 10%
    ${\rm{S}}_2$ 15% 6% 10% 15% 40% 8% 6%
    ${\rm{S}}_3$ 19% 8% 5% 22% 27% 13% 6%
    下载: 导出CSV
  • [1] J. Frederick, H. Snell, and E. Haywood, Photochem. Photobiol. 50, 443 (1989). doi: 10.1111/j.1751-1097.1989.tb05548.x
    [2] G. P. Pfeifer and A. Besaratinia, Photochem. Photobiol. Sci. 11, 90 (2012). doi: 10.1039/c1pp05144j
    [3] L. A. Baker, B. Marchetti, T. N. Karsili, V. G. Stavros, and M. N. Ashfold, Chem. Soc. Rev. 46, 3770 (2017). doi: 10.1039/C7CS00102A
    [4] N. D. Rodrigues, M. Staniforth, and V. G. Stavros, Proc. R. Soc. A Math.Phys. Eng. Sci. 472, 20160677 (2016). doi: 10.1098/rspa.2016.0677
    [5] N. D. Rodrigues and V. G. Stavros, Sci. Prog. 101, 8 (2018). doi: 10.3184/003685018X15166183479666
    [6] V. G. Stavros, Nat. Chem. 6, 955 (2014). doi: 10.1038/nchem.2084
    [7] C. A. Downs, E. Kramarsky-Winter, R. Segal, J. Fauth, S. Knutson, O. Bronstein, F. R. Ciner, R. Jeger, Y. Lichtenfeld, C. M. Woodley, P. Pennington, K. Cadenas, A. Kushmaro, and Y. Loya, Arch. Environ. Contam. Toxicol. 70, 265 (2016). doi: 10.1007/s00244-015-0227-7
    [8] S. L. Schneider and H. W. Lim, J. Am. Acad. Dermatol. 80, 266 (2019). doi: 10.1016/j.jaad.2018.06.033
    [9] M. D. Horbury, L. A. Baker, W. D. Quan, S. E. Greenough, and V. G. Stavros, Phys. Chem. Chem. Phys. 18, 17691 (2016). doi: 10.1039/C6CP01595F
    [10] A. Le Person, A. S. Lacoste, and J. P. Cornard, J. Photochem. Photobiol. A Chem. 265, 10 (2013). doi: 10.1016/j.jphotochem.2013.05.004
    [11] R. Świsłocka, Spectrochim. Acta A Mol. Biomol. Spectrosc. 100, 21 (2013). doi: 10.1016/j.saa.2012.01.048
    [12] C. N. Cao, C. F. Liu, L. Zhao, and G. W. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc. 240, 118565 (2020). doi: 10.1016/j.saa.2020.118565
    [13] S. Wang, S. Schatz, M. C. Stuhldreier, H. Böhnke, J. Wiese, C. Schröder, T. Raeker, B. Hartke, J. K. Keppler, K. Schwarz, F. Renth, and F. Temps , Phys. Chem. Chem. Phys. 19, 30683 (2017). doi: 10.1039/C7CP05301K
    [14] A. Urbaniak, M. Szeląg, and M. Molski, Comput. Theor. Chem. 1012, 33 (2013). doi: 10.1016/j.comptc.2013.02.018
    [15] J. Luo, Y. Liu, S. Yang, A. L. Flourat, F. Allais, and K. Han, J. Phys. Chem. Lett. 8, 1025 (2017). doi: 10.1021/acs.jpclett.7b00083
    [16] J. C. Dean, R. Kusaka, P. S. Walsh, F. Allais, and T. S. Zwier, J. Am. Chem. Soc. 136, 14780 (2014). doi: 10.1021/ja5059026
    [17] L. A. Baker, M. D. Horbury, S. E. Greenough, F. Allais, P. S. Walsh, S. Habershon, and V. G. Stavros, J. Phys. Chem. Lett. 7, 56 (2016). doi: 10.1021/acs.jpclett.5b02474
    [18] F. Liu, L. Du, Z. Lan, and J. Gao, Photochem. Photobiol. Sci. 16, 211 (2017). doi: 10.1039/C6PP00367B
    [19] L. A. Baker, M. Staniforth, A. L. Flourat, F. Allais, and V. G. Stavros, ChemPhotoChem 2, 743 (2018). doi: 10.1002/cptc.201800060
    [20] X. Zhao, J. Luo, S. Yang, and K. Han, J. Phys. Chem. Lett. 10, 4197 (2019). doi: 10.1021/acs.jpclett.9b01651
    [21] X. Zhao, J. Luo, Y. Liu, P. Pandey, S. Yang, D. Wei, and K. Han, J. Phys. Chem. Lett. 10, 5244 (2019). doi: 10.1021/acs.jpclett.9b02175
    [22] M. Horbury, W. D. Quan, A. Flourat, F. Allais, and V. Stavros, Phys. Chem. Chem. Phys. 19, 21127 (2017). doi: 10.1039/C7CP04070A
    [23] E. M. Tan, M. Hilbers, and W. J. Buma, J. Phys. Chem. Lett. 5, 2464 (2014). doi: 10.1021/jz501140b
    [24] J. Kockler, M. Oelgemöller, S. Robertson, and B. D. Glass, J. Photochem. Photobiol. C 13, 91 (2012). doi: 10.1016/j.jphotochemrev.2011.12.001
    [25] X. P. Chang, C. X. Li, B. B. Xie, and G. Cui, J. Phys. Chem. A 119, 11488 (2015). doi: 10.1021/acs.jpca.5b08434
    [26] N. Rodrigues, N. Cole-Filipiak, M. Horbury, M. Staniforth, T. Karsili, Y. Peperstraete, and V. Stavros, J. Photochem. Photobiol. A 353, 376 (2018). doi: 10.1016/j.jphotochem.2017.11.042
    [27] Y. Peperstraete, M. Staniforth, L. A. Baker, N. D. Rodrigues, N. C. Cole-Filipiak, W. D. Quan, and V. G. Stavros, Phys. Chem. Chem. Phys. 18, 28140 (2016). doi: 10.1039/C6CP05205C
    [28] M. D. Horbury, L. A. Baker, N. D. Rodrigues, W. D. Quan, and V. G. Stavros, Chem. Phys. Lett. 673, 62 (2017). doi: 10.1016/j.cplett.2017.02.004
    [29] F. Borges, J. L. Lima, I. Pinto, S. Reis, and C. Siquet, Helv. Chim. Acta 86, 3081 (2003). doi: 10.1002/hlca.200390250
    [30] Z. Lan, W. Domcke, V. Vallet, A. L. Sobolewski, and S. Mahapatra, J. Chem. Phys. 122, 224315 (2005). doi: 10.1063/1.1906218
    [31] A. L. Sobolewski and W. Domcke, J. Phys. Chem. A 105, 9275 (2001). doi: 10.1021/jp011260l
    [32] C. Xie and H. Guo, Chem. Phys. Lett. 683, 222 (2017). doi: 10.1016/j.cplett.2017.02.026
    [33] P. Mulder, H. G. Korth, D. A. Pratt, G. A. DiLabio, L. Valgimigli, G. Pedulli, and K. Ingold, J. Phys. Chem. A 109, 2647 (2005). doi: 10.1021/jp047148f
    [34] K. R. Yang, X. Xu, J. Zheng, and D. G. Truhlar, Chem. Sci. 5, 4661 (2014). doi: 10.1039/C4SC01967A
    [35] M. N. Ashfold, A. L. Devine, R. N. Dixon, G. A. King, M. G. Nix, and T. A. Oliver, Proc. Natl. Acad. Sci. 105, 12701 (2008). doi: 10.1073/pnas.0800463105
    [36] M. Barbatti, A. J. Aquino, J. J. Szymczak, D. Nachtigallová, P. Hobza, and H. Lischka, Proc. Natl. Acad. Sci. 107, 21453 (2010). doi: 10.1073/pnas.1014982107
    [37] K. Kleinermanns, D. Nachtigallová, and M. S. de Vries, Int. Rev. Phys. Chem. 32, 308 (2013). doi: 10.1080/0144235X.2012.760884
    [38] C. E. Crespo-Hernández, B. Cohen, P. M. Hare, and B. Kohler, Chem. Rev. 104, 1977 (2004). doi: 10.1021/cr0206770
    [39] B. G. Levine and T. J. Martínez, Annu. Rev. Phys. Chem. 58, 613 (2007). doi: 10.1146/annurev.physchem.57.032905.104612
    [40] C. X. Li, W. W. Guo, B. B. Xie, and G. Cui, J. Chem. Phys. 145, 074308 (2016). doi: 10.1063/1.4961261
    [41] A. L. Sobolewski and W. Domcke, Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Prosesses in the Condensed Phase, Dordrecht: Springer 93 (2002).
    [42] T. N. Karsili, B. Marchetti, M. N. Ashfold, and W. Domcke, J. Phys. Chem. A 118, 11999 (2014). doi: 10.1021/jp507282d
    [43] X. Zhuang, J. Wang, and Z. Lan, J. Phys. Chem. A 117, 4785 (2013). doi: 10.1021/jp402180p
    [44] X. Zhuang, J. Wang, and Z. Lan, J. Phys. Chem. B 117, 15976 (2013). doi: 10.1021/jp408799b
    [45] M. R. Silva-Junior and W. Thiel, J. Chem. Theory Comput. 6, 1546 (2010). doi: 10.1021/ct100030j
    [46] Z. Lan, E. Fabiano, and W. Thiel, ChemPhysChem 10, 1225 (2009). doi: 10.1002/cphc.200900030
    [47] W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495 (2000). doi: 10.1007/s002149900083
    [48] A. Koslowski, M. E. Beck, and W. Thiel, J. Comput. Chem. 24, 714 (2003). doi: 10.1002/jcc.10210
    [49] T. W. Keal, A. Koslowski, and W. Thiel, Theor. Chem. Acc. 118, 837 (2007). doi: 10.1007/s00214-007-0331-5
    [50] T. Shiozaki, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1331 (2018). doi: 10.1002/wcms.1331
    [51] E. Wigner, Am. Phys. Soc. 40, 749 (1932). doi: 10.1103/PhysRev.40.749
    [52] W. Thiel, MNDO Program, Version 6.1 (2007).
    [53] J. C. Tully, J. Chem. Phys. 93, 1061 (1990). doi: 10.1063/1.459170
    [54] G. Granucci and M. Persico, J. Chem. Phys. 126, 134114 (2007). doi: 10.1063/1.2715585
    [55] L. Du and Z. Lan, J. Chem. Theory Comput. 11, 1360 (2015). doi: 10.1021/ct501106d
    [56] D. Hu, Y. F. Liu, A. L. Sobolewski, and Z. Lan, Phys. Chem. Chem. Phys. 19, 19168 (2017). doi: 10.1039/C7CP01732D
    [57] D. Hu, Y. Xie, J. Peng, and Z. Lan, J. Chem. Theory Comput. 17, 3267 (2021). doi: 10.1021/acs.jctc.0c01249
    [58] A. Prlj, L. M. Ibele, E. Marsili, and B. F. Curchod, J. Phys. Chem. Lett. 11, 5418 (2020). doi: 10.1021/acs.jpclett.0c01439
    [59] M. Barbatti, J. Chem. Theory Comput. 16, 4849 (2020). doi: 10.1021/acs.jctc.0c00501
    [60] J. Suchan, D. Hollas, B. F. Curchod, and P. Slavíček, Faraday Discuss. 212, 307 (2018). doi: 10.1039/C8FD00088C
    [61] A. Belay, Infection 1, 3 (2012). doi: 10.5923/j.biophysics.20120202.01
    [62] P. Å. Malmqvist and B. O. Roos, Chem. Phys. Lett. 155, 189 (1989). doi: 10.1016/0009-2614(89)85347-3
    [63] J. Olsen, Int. J. Quantum Chem. 111, 3267 (2011). doi: 10.1002/qua.23107
    [64] J. Finley, P. Å. Malmqvist, B. O. Roos, and L. SerranoAndrés, Chem. Phys. Lett. 288, 299 (1998). doi: 10.1016/S0009-2614(98)00252-8
    [65] E. K. Gross and N. T. Maitra, Fundamentals of Timedependent Density Functional Theory, Berlin, Heidelberg: Springer Berlin Heidelberg, 99 (2012).
    [66] B. G. Levine, C. Ko, J. Quenneville, and T. J. MartÍnez, Mol. Phys. 104, 1039 (2006). doi: 10.1080/00268970500417762
  • suppl_data.zip
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  105
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-28
  • 录用日期:  2023-03-06
  • 网络出版日期:  2023-03-11

目录

    /

    返回文章
    返回