-
Abstract: As a widely-used sunscreen compound, the caffeic acid (CA) shows the strong UV absorption, while the photoinduced reaction mechanisms behind its photoprotection ability are not fully understood. We try to investigate the photoinduced internal conversion dynamics of CA in order to explore the photoprotection mechanism. The most stable CA isomer is selected to examine its nonadiabatic dynamics using the on-the-fly surface hopping simulations at the semi-empirical level of electronic-structure theory. The dynamics starting from different electronic states are simulated to explore the dependence of the photoinduced reaction channels on the excitation wavelengths. Several S1/S0 conical intersections, driven by the H-atom detachments and the ring deformations, have been found to be responsible for the nonadiabatic decay of the CA. The simulation results show that the branching ratios towards these intersections are modified by the light with different excitation energies. This provides the valuable information for the understanding of the photoprotection mechanism of the CA compound.
-
Key words:
- Caffeic acid /
- Nonadiabatic dynamics /
- Surface hopping
-
Figure 7. The branching ratio of the photoreaction channels under different excitation energies: (a) four domains including < 4.1 eV, 4.1–4.5 eV, 4.5–5.0 eV, and > 5.0 eV, respectively; (b) eight energy domains including < 4.1 eV, 4.1–4.3 eV, 4.3–4.5 eV, 4.5–4.7 eV, 4.7–4.9 eV, 4.9–5.1 eV, 5.1–5.3 eV, and > 5.3 eV, respectively.
Table I. Key geometrical parameters (bond lengths in Å and angles in degree) of the S0-min, S1-min and four CIs at the OM2/MRCI level, together with the S0-min results reported in the previous work [42].
Structure Bond length Dihedral angle O$ _{20} $–H O$ _{18} $–H C$ _3 $–C$ _{10} $ C$ _{10} $–C$ _{12} $ C$ _2 $–C$ _3 $–C$ _{10} $–C$ _{12} $ C$ _3 $–C$ _{10} $–C$ _{12} $–C$ _{14} $ S0-min 0.992 0.996 1.457 1.353 180.0 180.0 S0-min [42] 0.960 0.960 1.540 1.355 180.0 180.0 S1-min 0.990 0.982 1.434 1.355 168.0 178.9 CI-I 1.549 0.997 1.461 1.350 180.0 180.0 CI-II 0.999 1.538 1.450 1.351 178.3 180.0 CI-III 0.998 0.998 1.459 1.347 176.2 180.0 CI-IV 0.999 0.986 1.445 1.354 172.4 179.7 Table II. The branching ratio of each CI channel in the nonadiabatic dynamics of CA.
State Branching ratio CI-I CI-II CI-III CI-IV CI-III+CI-IV Else No hop ${\rm{S}}_1$ 21% 3% 5% 17% 34% 10% 10% ${\rm{S}}_2$ 15% 6% 10% 15% 40% 8% 6% ${\rm{S}}_3$ 19% 8% 5% 22% 27% 13% 6% -
[1] J. Frederick, H. Snell, and E. Haywood, Photochem. Photobiol. 50, 443 (1989). doi: 10.1111/j.1751-1097.1989.tb05548.x [2] G. P. Pfeifer and A. Besaratinia, Photochem. Photobiol. Sci. 11, 90 (2012). doi: 10.1039/c1pp05144j [3] L. A. Baker, B. Marchetti, T. N. Karsili, V. G. Stavros, and M. N. Ashfold, Chem. Soc. Rev. 46, 3770 (2017). doi: 10.1039/C7CS00102A [4] N. D. Rodrigues, M. Staniforth, and V. G. Stavros, Proc. R. Soc. A Math.Phys. Eng. Sci. 472, 20160677 (2016). doi: 10.1098/rspa.2016.0677 [5] N. D. Rodrigues and V. G. Stavros, Sci. Prog. 101, 8 (2018). doi: 10.3184/003685018X15166183479666 [6] V. G. Stavros, Nat. Chem. 6, 955 (2014). doi: 10.1038/nchem.2084 [7] C. A. Downs, E. Kramarsky-Winter, R. Segal, J. Fauth, S. Knutson, O. Bronstein, F. R. Ciner, R. Jeger, Y. Lichtenfeld, C. M. Woodley, P. Pennington, K. Cadenas, A. Kushmaro, and Y. Loya, Arch. Environ. Contam. Toxicol. 70, 265 (2016). doi: 10.1007/s00244-015-0227-7 [8] S. L. Schneider and H. W. Lim, J. Am. Acad. Dermatol. 80, 266 (2019). doi: 10.1016/j.jaad.2018.06.033 [9] M. D. Horbury, L. A. Baker, W. D. Quan, S. E. Greenough, and V. G. Stavros, Phys. Chem. Chem. Phys. 18, 17691 (2016). doi: 10.1039/C6CP01595F [10] A. Le Person, A. S. Lacoste, and J. P. Cornard, J. Photochem. Photobiol. A Chem. 265, 10 (2013). doi: 10.1016/j.jphotochem.2013.05.004 [11] R. Świsłocka, Spectrochim. Acta A Mol. Biomol. Spectrosc. 100, 21 (2013). doi: 10.1016/j.saa.2012.01.048 [12] C. N. Cao, C. F. Liu, L. Zhao, and G. W. Rao, Spectrochim. Acta A Mol. Biomol. Spectrosc. 240, 118565 (2020). doi: 10.1016/j.saa.2020.118565 [13] S. Wang, S. Schatz, M. C. Stuhldreier, H. Böhnke, J. Wiese, C. Schröder, T. Raeker, B. Hartke, J. K. Keppler, K. Schwarz, F. Renth, and F. Temps , Phys. Chem. Chem. Phys. 19, 30683 (2017). doi: 10.1039/C7CP05301K [14] A. Urbaniak, M. Szeląg, and M. Molski, Comput. Theor. Chem. 1012, 33 (2013). doi: 10.1016/j.comptc.2013.02.018 [15] J. Luo, Y. Liu, S. Yang, A. L. Flourat, F. Allais, and K. Han, J. Phys. Chem. Lett. 8, 1025 (2017). doi: 10.1021/acs.jpclett.7b00083 [16] J. C. Dean, R. Kusaka, P. S. Walsh, F. Allais, and T. S. Zwier, J. Am. Chem. Soc. 136, 14780 (2014). doi: 10.1021/ja5059026 [17] L. A. Baker, M. D. Horbury, S. E. Greenough, F. Allais, P. S. Walsh, S. Habershon, and V. G. Stavros, J. Phys. Chem. Lett. 7, 56 (2016). doi: 10.1021/acs.jpclett.5b02474 [18] F. Liu, L. Du, Z. Lan, and J. Gao, Photochem. Photobiol. Sci. 16, 211 (2017). doi: 10.1039/C6PP00367B [19] L. A. Baker, M. Staniforth, A. L. Flourat, F. Allais, and V. G. Stavros, ChemPhotoChem 2, 743 (2018). doi: 10.1002/cptc.201800060 [20] X. Zhao, J. Luo, S. Yang, and K. Han, J. Phys. Chem. Lett. 10, 4197 (2019). doi: 10.1021/acs.jpclett.9b01651 [21] X. Zhao, J. Luo, Y. Liu, P. Pandey, S. Yang, D. Wei, and K. Han, J. Phys. Chem. Lett. 10, 5244 (2019). doi: 10.1021/acs.jpclett.9b02175 [22] M. Horbury, W. D. Quan, A. Flourat, F. Allais, and V. Stavros, Phys. Chem. Chem. Phys. 19, 21127 (2017). doi: 10.1039/C7CP04070A [23] E. M. Tan, M. Hilbers, and W. J. Buma, J. Phys. Chem. Lett. 5, 2464 (2014). doi: 10.1021/jz501140b [24] J. Kockler, M. Oelgemöller, S. Robertson, and B. D. Glass, J. Photochem. Photobiol. C 13, 91 (2012). doi: 10.1016/j.jphotochemrev.2011.12.001 [25] X. P. Chang, C. X. Li, B. B. Xie, and G. Cui, J. Phys. Chem. A 119, 11488 (2015). doi: 10.1021/acs.jpca.5b08434 [26] N. Rodrigues, N. Cole-Filipiak, M. Horbury, M. Staniforth, T. Karsili, Y. Peperstraete, and V. Stavros, J. Photochem. Photobiol. A 353, 376 (2018). doi: 10.1016/j.jphotochem.2017.11.042 [27] Y. Peperstraete, M. Staniforth, L. A. Baker, N. D. Rodrigues, N. C. Cole-Filipiak, W. D. Quan, and V. G. Stavros, Phys. Chem. Chem. Phys. 18, 28140 (2016). doi: 10.1039/C6CP05205C [28] M. D. Horbury, L. A. Baker, N. D. Rodrigues, W. D. Quan, and V. G. Stavros, Chem. Phys. Lett. 673, 62 (2017). doi: 10.1016/j.cplett.2017.02.004 [29] F. Borges, J. L. Lima, I. Pinto, S. Reis, and C. Siquet, Helv. Chim. Acta 86, 3081 (2003). doi: 10.1002/hlca.200390250 [30] Z. Lan, W. Domcke, V. Vallet, A. L. Sobolewski, and S. Mahapatra, J. Chem. Phys. 122, 224315 (2005). doi: 10.1063/1.1906218 [31] A. L. Sobolewski and W. Domcke, J. Phys. Chem. A 105, 9275 (2001). doi: 10.1021/jp011260l [32] C. Xie and H. Guo, Chem. Phys. Lett. 683, 222 (2017). doi: 10.1016/j.cplett.2017.02.026 [33] P. Mulder, H. G. Korth, D. A. Pratt, G. A. DiLabio, L. Valgimigli, G. Pedulli, and K. Ingold, J. Phys. Chem. A 109, 2647 (2005). doi: 10.1021/jp047148f [34] K. R. Yang, X. Xu, J. Zheng, and D. G. Truhlar, Chem. Sci. 5, 4661 (2014). doi: 10.1039/C4SC01967A [35] M. N. Ashfold, A. L. Devine, R. N. Dixon, G. A. King, M. G. Nix, and T. A. Oliver, Proc. Natl. Acad. Sci. 105, 12701 (2008). doi: 10.1073/pnas.0800463105 [36] M. Barbatti, A. J. Aquino, J. J. Szymczak, D. Nachtigallová, P. Hobza, and H. Lischka, Proc. Natl. Acad. Sci. 107, 21453 (2010). doi: 10.1073/pnas.1014982107 [37] K. Kleinermanns, D. Nachtigallová, and M. S. de Vries, Int. Rev. Phys. Chem. 32, 308 (2013). doi: 10.1080/0144235X.2012.760884 [38] C. E. Crespo-Hernández, B. Cohen, P. M. Hare, and B. Kohler, Chem. Rev. 104, 1977 (2004). doi: 10.1021/cr0206770 [39] B. G. Levine and T. J. Martínez, Annu. Rev. Phys. Chem. 58, 613 (2007). doi: 10.1146/annurev.physchem.57.032905.104612 [40] C. X. Li, W. W. Guo, B. B. Xie, and G. Cui, J. Chem. Phys. 145, 074308 (2016). doi: 10.1063/1.4961261 [41] A. L. Sobolewski and W. Domcke, Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Prosesses in the Condensed Phase, Dordrecht: Springer 93 (2002). [42] T. N. Karsili, B. Marchetti, M. N. Ashfold, and W. Domcke, J. Phys. Chem. A 118, 11999 (2014). doi: 10.1021/jp507282d [43] X. Zhuang, J. Wang, and Z. Lan, J. Phys. Chem. A 117, 4785 (2013). doi: 10.1021/jp402180p [44] X. Zhuang, J. Wang, and Z. Lan, J. Phys. Chem. B 117, 15976 (2013). doi: 10.1021/jp408799b [45] M. R. Silva-Junior and W. Thiel, J. Chem. Theory Comput. 6, 1546 (2010). doi: 10.1021/ct100030j [46] Z. Lan, E. Fabiano, and W. Thiel, ChemPhysChem 10, 1225 (2009). doi: 10.1002/cphc.200900030 [47] W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495 (2000). doi: 10.1007/s002149900083 [48] A. Koslowski, M. E. Beck, and W. Thiel, J. Comput. Chem. 24, 714 (2003). doi: 10.1002/jcc.10210 [49] T. W. Keal, A. Koslowski, and W. Thiel, Theor. Chem. Acc. 118, 837 (2007). doi: 10.1007/s00214-007-0331-5 [50] T. Shiozaki, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1331 (2018). doi: 10.1002/wcms.1331 [51] E. Wigner, Am. Phys. Soc. 40, 749 (1932). doi: 10.1103/PhysRev.40.749 [52] W. Thiel, MNDO Program, Version 6.1 (2007). [53] J. C. Tully, J. Chem. Phys. 93, 1061 (1990). doi: 10.1063/1.459170 [54] G. Granucci and M. Persico, J. Chem. Phys. 126, 134114 (2007). doi: 10.1063/1.2715585 [55] L. Du and Z. Lan, J. Chem. Theory Comput. 11, 1360 (2015). doi: 10.1021/ct501106d [56] D. Hu, Y. F. Liu, A. L. Sobolewski, and Z. Lan, Phys. Chem. Chem. Phys. 19, 19168 (2017). doi: 10.1039/C7CP01732D [57] D. Hu, Y. Xie, J. Peng, and Z. Lan, J. Chem. Theory Comput. 17, 3267 (2021). doi: 10.1021/acs.jctc.0c01249 [58] A. Prlj, L. M. Ibele, E. Marsili, and B. F. Curchod, J. Phys. Chem. Lett. 11, 5418 (2020). doi: 10.1021/acs.jpclett.0c01439 [59] M. Barbatti, J. Chem. Theory Comput. 16, 4849 (2020). doi: 10.1021/acs.jctc.0c00501 [60] J. Suchan, D. Hollas, B. F. Curchod, and P. Slavíček, Faraday Discuss. 212, 307 (2018). doi: 10.1039/C8FD00088C [61] A. Belay, Infection 1, 3 (2012). doi: 10.5923/j.biophysics.20120202.01 [62] P. Å. Malmqvist and B. O. Roos, Chem. Phys. Lett. 155, 189 (1989). doi: 10.1016/0009-2614(89)85347-3 [63] J. Olsen, Int. J. Quantum Chem. 111, 3267 (2011). doi: 10.1002/qua.23107 [64] J. Finley, P. Å. Malmqvist, B. O. Roos, and L. SerranoAndrés, Chem. Phys. Lett. 288, 299 (1998). doi: 10.1016/S0009-2614(98)00252-8 [65] E. K. Gross and N. T. Maitra, Fundamentals of Timedependent Density Functional Theory, Berlin, Heidelberg: Springer Berlin Heidelberg, 99 (2012). [66] B. G. Levine, C. Ko, J. Quenneville, and T. J. MartÍnez, Mol. Phys. 104, 1039 (2006). doi: 10.1080/00268970500417762 -
suppl_data.zip
-